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Abstract
Background: A general theory of sampling and its application in tissue based diagnosis is presented.
Sampling is defined as extraction of information from certain limited spaces and its transformation into a
statement or measure that is valid for the entire (reference) space. The procedure should be reproducible
in time and space, i.e. give the same results when applied under similar circumstances. Sampling includes
two different aspects, the procedure of sample selection and the efficiency of its performance. The
practical performance of sample selection focuses on search for localization of specific compartments
within the basic space, and search for presence of specific compartments.

Methods: When a sampling procedure is applied in diagnostic processes two different procedures can be
distinguished: I) the evaluation of a diagnostic significance of a certain object, which is the probability that
the object can be grouped into a certain diagnosis, and II) the probability to detect these basic units.
Sampling can be performed without or with external knowledge, such as size of searched objects,
neighbourhood conditions, spatial distribution of objects, etc. If the sample size is much larger than the
object size, the application of a translation invariant transformation results in Kriege's formula, which is
widely used in search for ores. Usually, sampling is performed in a series of area (space) selections of
identical size. The size can be defined in relation to the reference space or according to interspatial
relationship. The first method is called random sampling, the second stratified sampling.

Results: Random sampling does not require knowledge about the reference space, and is used to estimate
the number and size of objects. Estimated features include area (volume) fraction, numerical, boundary
and surface densities. Stratified sampling requires the knowledge of objects (and their features) and
evaluates spatial features in relation to the detected objects (for example grey value distribution around
an object). It serves also for the definition of parameters of the probability function in so – called active
segmentation.

Conclusion: The method is useful in standardization of images derived from immunohistochemically
stained slides, and implemented in the EAMUS™ system http://www.diagnomX.de. It can also be applied
for the search of "objects possessing an amplification function", i.e. a rare event with "steering function".
A formula to calculate the efficiency and potential error rate of the described sampling procedures is given.
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Introduction
Diagnostic surgical pathology or tissue – based diagnosis
is confronted with remarkable changes in its environment
and workflow. The technological progress has led to a
broad application of molecular biological methods such
as Fluorescent in Situ Hybridization (FISH), and other
DNA – sequence amplification techniques [1,2]. Com-
mercially available slide scanners digitize a complete glass
slide within a few minutes, and permit the implementa-
tion of completely digitized images into routine diagnos-
tics [3,4]. In other words, the workload of a pathologist
increases steadily not only by increase of material, but, in
addition, due to the mandatory introduction of new, still
tissue – based diagnostic technologies. Thus, the question
arises: How can the availability of and access to digitized
histological slides (virtual slides) be used to release the
diagnostic pathologist from time consuming work steps
in order to make the pathologist's work more effective and
disease related?

In the early days of telepathology, which can be consid-
ered to be the "mother of the digital pathologist's world",
several authors reported on the diagnostic accuracy of
viewing digitized slides in comparison to conventional
microscopy [4-8]. The results were clear: the diagnostic
accuracy viewing at a digitized (or virtual) slide is indistin-
guishable to that of conventional microscopy; however,
the required time is essentially longer [9,10]. The non
appropriate and more time consuming search for appro-
priate fields of view or the performed sampling procedure
are obviously one reason of these constraints. To our
knowledge, the theory of sampling in cytology and his-
topathology has not been described in detail, and is nearly
unknown in the environment of diagnostic pathologists.
In this article we want to explain the main theoretical
aspects and the derivatives of sampling which are per-
formed in routine tissue – based diagnostics. The derived
formulas will allow interested pathologists or scientists to
search for applications that can diminish the sampling
time in virtual slides.

Basic aspects of sampling in digitized histological slides 
(virtual slides)
Surgical pathology is a medical discipline that "extracts"
information from human tissue and classifies the infor-
mation in distinct terms that are called diagnoses. The
common performance is to screen an organ or a tissue sec-
tion for those spaces or areas that contain the most signif-
icant information, and try to classify this information seen
in the specific field of view. Thus, tissue – based diagnosis
is based upon a procedure to search for small samples that
allow to derive information that is valid for the whole (or
even patient). In other words, an appropriate sampling
procedure is a precondition to evaluate accurate and
reproducible diagnoses [2,4,11-15]. Therefore, a detailed

definition and accurate description of the sampling
method is a necessity if we want to further evaluate the
diagnostic algorithms. This statement induces the defini-
tion of sampling as follows: Sampling is a method to
derive information from a limited (small) compartment
of a large (even unlimited) system that is valid for the
entire (basic) system. The system can be a space, a func-
tion or set of functions, a body, an organ, a slide, or a DNA
sequence.

The definition includes the term information, which has
again to be defined: Information is a property that is
exchanged between a sender and a receiver. Information is
a property that can be understood by, and allows the
receiver to react in an adequate, i.e., predictive manner.
This definition of sampling includes two different aspects,
which depend upon each other:

1. the method of sampling, and

2. the aim of the sampling procedure, i.e., which informa-
tion should be extracted.

Different aims can require different methods of sampling,
or at least different parameters of the same algorithm. The
inclusion of an "aim" or "goal" to be assessed introduces
the calculation of efficiency, or a cost/benefit estimation.

The most frequently used sampling goals are

➢ search for localization of specific items within the basic
space, with the knowledge or assumption, that the space
under consideration contains such items, and

➢ search for presence of specific items (tumour cells, ores,
lobster, etc.), where the exact localisation of these items is
of minor interest (for example localization of tumour cells
in a cytological smear).

The prepositions to apply an adequate sampling proce-
dure in tissue – based diagnosis include that number and
size of the samples are limited. In addition, the detectable
information has to be known. This information com-
monly depends upon additional (external) factors, and
can be translated into diagnostic features that allow the
detection and identification of a probe within the sam-
pling space. These features can depend upon the size of
the probes, their number, and their position within the
collective, or even within the sampling space.

Let us assume that the final goal of our sampling method
is the extraction of information from the entire space, and
the classification of this information into a diagnosis. The
diagnostic process can be separated into two different pro-
cedures:
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I) the evaluation of a diagnostic significance of a certain
object or "basic unit" which is the probability that the
object can be grouped into a certain diagnosis, and

II) the probability to detect these basic units within the
entire space.

The detection probability of a wanted object depends then
upon the size of the basic space A (filed of view, organ,
nucleus, etc), the number and size of the samples (diag-
nostic frames) D, and number and the sizes of the
detected objects [Ci], as demonstrated in figure 1. Each
detected object Ci possesses a certain probability to con-
tribute to the diagnosis I which can be obtained by a map-
ping (Ci, D) on ID. ID is the probability to state the
diagnosis I within the frame D by the object i, or ID = s(Ci,
D). Basic examples are given in figure 2, figure 3, and in
figure 4. In principle, the differentiation of the mapping of

(Ci, D) on ID into the two different procedures, namely a)
the detection (geometric significance) and into the diag-
nostic contribution reflects to the applied segmentation
algorithms. These distinguish between areas (pixels) that
contributed to the object and those that do not. Measure-
ments of objects can only be done if the object is com-
pletely covered by the sample frame. The spatial selection
of the samples can either be performed randomly, or
dependent upon the localization of already segmented
objects (stratified sampling). Stratified sampling is based
upon the general law of self organization, i.e., similar bio-
logical systems tend to be localized in a neighbourhood
relation. In other words, to detect a cancer cell is more
likely in the neighbourhood of an already identified can-
cer cell than elsewhere. The function of diagnostic signifi-
cance is often of exponential nature, and in light
microscopy related to three different image properties,

Survey of sampling algorithmFigure 1
Survey of sampling algorithm.
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namely the texture, the object, and the object – associated
structure [12,16-19].

Sampling aims, applications and examples
Sampling is basically an information detection and trans-
formation procedure, and thus undertaken to reach a cer-
tain final aim, for example to state a diagnosis, or to
identify the presence or absence of certain objects. A time
and space invariant translation of the sampling procedure
can be assumed as long as we want to obtain reproducible
results (figure 3). Such a translation permits a separation
of the object detection likelihood from the diagnostic sig-
nificance of the segmented objects, and allows us to com-
pute both properties separately. Assuming a digitized
image, each point (pixel x, y) within the basic image is
either a presentation of an object or not. All object fea-
tures can be reduced to a function that represents the
object pixels in relation to sample and basic image size

(figure 4). The introduction of an exponential diagnosis
function then gives us the well known formula of Krige,
which is commonly used to detect ores, oil fields, or
underground water reservations [20]. Furthermore, the
application of specific mappings (dilation, erosion) per-
mits us to "increase the magnification of an object within
its sampling frame, or to define the center of gravity in an
object in order to compute the image structure. One will
obtain a so – called order of structures if these procedures
are repetitively applied to light microscopy [21].

Random and stratified sampling procedures
The prerequisite of any (random, stratified) sampling is at
least a binary image, i.e. a foreground defining the basic
units and a background have to exist. Any sampling pro-
cedure can be performed either as random or stratified
sampling figure 5 and figure 6. In addition, an active, pas-
sive, and a functional sampling can be distinguished.

Examples of different sampling proceduresFigure 2
Examples of different sampling procedures.
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Random sampling is the selection of biological meaning-
ful units (nuclei, cells, proteins, etc.) at random. It is used
to measure

➢ the frequency of the analyzed units in relation to each
other or to the basic space (structure);

➢ certain features of the biological units in relation to the
basic space (to further identify and classify the objects).

No information about the basic (reference) space is
needed. The detection of biological meaningful units is
then equivalent to the segmentation of the image and
analysis of randomly chosen segmented elements. This
procedure forms the basis of numerous investigations
since the 1950s. It is commonly called stereology [22-26].
In principle, a grid consisting of regular lines (points)
with identical length (and distance in between) is over-
layed to the image, and the number of hits (intersections)
is counted. From the number of intersections the volume
– adjusted frequency, size, surface can be derived, inde-
pendent from the orientation and shape of the elements.
In a binary image the pixels (binary x, y points) can be
used as a grid. Random chosen are the cutting angle
(plane/volume), and the start point of the grid (pixel).

Stratified are the selection of the grid (all pixels) and the
count of intersections. Thus, any random sampling is pro-
vided by the start of the procedure, for example by ran-
dom selection of the upper right position (x, y)
coordinates of the sample space. From the relation x/A
(number of hits x/reference area A) two-dimensional (and
also three – dimensional) parameters can be derived.
These include the area density (Aa), the volume density
(Vv), the boundary density (Ba), the numerical density
(Na), and the surface density (Sv). It should be noted, that
this quite easily applied procedure permits the estimation
of significant three – dimensional object features without
any sophisticated three dimensional reconstruction
[23,27,18,29].

Stratified sampling, in contrast, is provided by a specific
selection of intersections (objects). Its objective is the
detection of specific objects (of known features), and the
measurement of features of known specific objects, or the
estimation of objective-associated reference volumes, for
example the density of proliferating cells related to dis-
tance from the nearest vessel [3,9,18,21]. Using again a
grid as a measurement tool, the cutting angle (plane/vol-
ume) and the start point of the grid (pixel) are also ran-
domly chosen. Stratified are the selection of the grid (all

Examples of probability calculations in various sampling proceduresFigure 3
Examples of probability calculations in various sampling procedures.
Page 5 of 13
(page number not for citation purposes)



Diagnostic Pathology 2009, 4:6 http://www.diagnosticpathology.org/content/4/1/6
pixels), and the count of specific intersections (for exam-
ple large cells) only. Thus: stratified sampling is provided
by specific a selection of intersections (objects). A classic
example is its application in cytology, i.e. to find the diag-
nosis-relevant cell (tumor cell) within a large number of
"normal" cells. One could try to analyze

1. only those areas which contain features of (any) cell
(gray value selection at low magnification)

2. within these areas only those cells which seem to be
abnormal (gray value, size, moderate magnification)

3. within these cells those with abnormal nuclear size
(DNA content), high magnification.

4. terminate the procedure once the diagnosis – signifi-
cant information has been obtained

All other items are disregarded or neglected. The imple-
mentation of such an algorithm can speed up the time
required "to screen a slide" significantly [5,12,30].

Stratified sampling requires some external knowledge in
order to detect the biological meaningful events such as
cancer cells. The image features of a cancer cell have to be
known if one would like to detect this event by stratified
sampling. The alternative algorithm would be to "sample"
all cells, and start, if possible, a statistical analysis. This
would then try to evaluate the rare events (supposing that
cancer cells are rare to normal cells). Again, some external
knowledge would be necessary. Obviously, this is related
to the diagnosis function s(Ci, D).

Stratified sampling requires an accurate segmentation of
objects with known features. Independent upon the

Examples of sampling procedures in segmentation and diagnosis classificationFigure 4
Examples of sampling procedures in segmentation and diagnosis classification.
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actual segmentation procedure the sampling can be per-
formed as active and passive sampling.

Active and passive sampling
Any segmentation procedure has to accurately define the
area of an object, which is equivalent to detect its bound-
ary. Each pixel has to be distinguished either to belong to
the object or not, which can be written: f(x, y, meaning) =
[1,0], with f(x, y, object) = [1], and f(x, y, backgound) =
[0] This approach is called passive sampling, as it discrim-
inates the object area by a simple yes – no function [14].
In other words, passive sampling is provided by a constant
relation between the objects and the grid (intersections).
The intersection has the probability function p(i) = [1].

Active sampling is a different approach. It is provided by
an objective-specific relation between the objects and the
grid (intersections). The probability that a pixel belongs to
an object ranges between [1,0]. The intersection has a

probability function p(i, o), i.e., the probability to detect
the pixels that belong to a certain object depends on the
object itself and its neighborhood [20]. For example, a
pixel displays a probability of 0.7 that it belongs to the
object. This probability can increase or decrease depend-
ent upon additional parameters, such as size, orientation,
or shape of neighboring objects. Naturally, the probability
value of 0.7 itself might be used to define whether it is an
"object" – or a "background" pixel.

The probability function p(i, o) can be calculated if we
separate p(i, o) in its two components: p(i, o) = gr(x, v) *
af(gr, v).

gr(x, y) is the frequency distribution of different objects in
the reference space v,

af(gr, v) is the detection probability in the space v.

Derivatives of basic sampling procedures in separating the diagnosis function s from the sampling function pFigure 5
Derivatives of basic sampling procedures in separating the diagnosis function s from the sampling function p.
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If we assume that af(gr, v) = const in the reference space v,
we can estimate p(i, o) by a set of measurements in differ-
ent sample spaces and transform p(i, o) = [1] if gr(x, y) >
const, and p(I, o) = [0] elsewhere.

Active sampling has been reported to be an effective
method to correct the variation in immunohistochemistry
staining, for example to compute the threshold of positive
staining intensity [2]. The classic problem is: At which
staining intensity (color level) can an "immunohisto-
chemically analyzed cell" be grouped into the positive
class? The active sampling attempt is to measure the rela-
tion positive/negative cells at different threshold levels in
several randomly selected sample areas. We then select the
discrimination threshold which results in (number of
positive objects/number of negative objects) = const for
all selected samples. A characteristic application is dem-
onstrated in figure 7. It displays a Mib_1 stain for prolifer-

ating nuclei in a lung carcinoma, and the relative number
of positive nuclei dependent upon three different thresh-
olds measured in five different sample areas. Threshold
number three is obviously too high, and the threshold
number 1 too low. The threshold number two should be
chosen as discriminating threshold, i.e., to calculate the
relative number of proliferating nuclei. This algorithm has
been successfully implemented in the automated immu-
nohistochemistry measurement system (EAMUS™)
[2,3,9,16,17].

Functional sampling
The idea of functional sampling focuses on the interpreta-
tion of rare events [12,14,15,31-33]. The question arises:
Do there exist certain rare cells within a cellular society
(tissue) that possess a high functional power similar to
catalysts in chemistry. If yes, how can they be identified?
Therefore, functional sampling is defined as the search for

Survey of different sampling proceduresFigure 6
Survey of different sampling procedures.
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a specific (key) function of rare biological objects within
a different (majority) population. As the function to be
analyzed might be unknown and we cannot observe the
proposed function directly, we have to state the following
prerequisites for proper analysis:

1. The specific object (cell) is rare within the basic popu-
lation.

2. It has to possess regular neighborhood relations to
objects of the basic population.

3. It has to be randomly distributed within the reference
space.

The proposed algorithm tries to evaluate the distance
properties between the rare events and the frequent
events, and the general distribution of rare events within
the reference space as follows:

1. We perform a random sampling of the specific (rare)
object (O) within the basic population Ni (to estimating
O [Ni]).

2. We perform a stratified sampling "around" each
detected specific object (to estimating Ni(0)).

3. If Ni(O) = constant we can assume a specific function of
the object (cell) within the basic population (for example

Example of an active sampling to determine the discrimination threshold of a Mib-1 PAP stained undifferentiated large cell car-cinoma (in association to the distance of the nearest vessel (proliferating nuclei are stained brown, vessels are stained red)Figure 7
Example of an active sampling to determine the discrimination threshold of a Mib-1 PAP stained undifferenti-
ated large cell carcinoma (in association to the distance of the nearest vessel (proliferating nuclei are stained 
brown, vessels are stained red). The percentages of stained nuclei in relation to three different thresholds (level 1 – 3) are 
shown for six different sample areas. The discrimination threshold can be chosen between level 1 and level 2 without major 
error in contrast to level 3, which would result in wrong (too low) estimates.
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cellular immune competence, functional activation of
cells, etc.).

An example is shown in figure 8 which displays the bind-
ing capacities of labeled galectin-1 in an undifferentiated
lung carcinoma. Only one large intensively stained cell is
present in this sample area (marked by an arrow). Its fre-
quency in all samples is < 5%, and the mean distance
between these cells measures 245 ± 198 μm, i.e. these cells
do not express a constant distance in between. The oppo-
site, however, holds true for the distance between these
large cells and their nearest (majority) cells as well as
between the other cells within this tissue. From these fig-
ures we can derive, that the rare large cells probably posses
a significant biological function for the whole tissue
(according to biochemical investigations galectin-1

belongs to a family of galactoside binding proteins that
has growth regulatory and immunomodulatory proper-
ties [21].

Sampling efficiency
As we have defined sampling, it is a procedure that wants
to describe space and time-related properties in surgical
pathology, i.e. in tissue – based diagnosis. Such an inves-
tigation can be performed in different manners, which can
be of different efficiencies. How can sampling efficiency
be measured? Obviously, any sampling efficiency is
closely related to the spatial distribution of the events
searched for in the reference space. If the spatial distribu-
tion is known we can adjust the sampling procedure cor-
respondingly. However, its spatial distribution is often
not known, and we have to start with a random selection

Example of expanded functional sampling: A rare event (galectin-1 binding large cancer cell) within a large cell anaplastic lung carcinoma displays a regular distance to its nearest neighbouring cells and a random distribution within the whole slideFigure 8
Example of expanded functional sampling: A rare event (galectin-1 binding large cancer cell) within a large cell 
anaplastic lung carcinoma displays a regular distance to its nearest neighbouring cells and a random distribu-
tion within the whole slide. In combination with biochemical data the result supports the idea that these cells might posses 
a "catalyst" function for progression of the total cancer cell population.
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of certain compartments (samples). We can then measure
the spatial distribution (frequency) p = s(N)/v, and the
variation of p is the error E(p), which should be small in
order to have an efficient sampling procedure. Usually, we
can state that the reference space v >> s(Ne) (size of ele-
ment e). The error E(p) can then be calculated according
to

E(p) = Σ[E2(Ne) + E2(B(n)) + E2(Ne/sv)](1/2)

with

E(Ne) = error of detecting an individual event (i.e., prob-
ability of identification/missing a tumor cell)

E(B(n)) = error of measuring all elements in the reference
space (i.e., related to the biological variance of the tissue,
dependent upon N)

E(Ne/v) = error of measuring the size of events e in rela-
tion to size of sampling space S (frequency of e in sample
space sv).

We can derive the following statements from this formula:

1. We obtain the smallest sampling error if we select the
reference volume as sample size, and if we are dealing
with regular tissue (small biological variance).

2. The smaller the sample sizes in relation to the size of
events, the bigger is the sampling error, as long as the error
to segment (identify) per event is not increasing.

3. The sampling error is increasing if we choose different
sizes of the samples.

Discussion
To take and to analyze samples of a broad variety of tis-
sues is a basic procedure in surgical pathology, or in tissue
– based diagnosis. All diagnostic algorithms depend upon
a correct and reliable sampling procedure, and extensive
training in surgical pathology addresses to identify and
sample those tissue compartments that probably contain
the most significant information to classify the disease
present [7,19,34-38]. The majority of investigations
addresses to an optimum sampling procedure, for exam-
ple. How many sentinel lymph nodes should be investi-
gated in relation to the stage of breast cancer [29,31], or
"optimizing sampling of tomato fruit for carotenoid con-
tent, or how to perform endometrial sampling in patients
with trophoblastic disease after suction curettage [39,40].
In the early days of stereology several authors took atten-
tion on the sampling procedures, as the results of count-
ing interceptions are closely associated to the nature of the
used sampling method [22,23]. Recently, sampling has

returned to the focus of investigations, especially in live
imaging [41]. Most of the investigations try to optimize
the sampling, which is equivalent to evaluate the "best"
stratified sampling method.

In addition to medical applications, sampling plays a
dominant role in geology, especially mining. In fact,
Krige's sampling analysis can be considered to be the first
approach to develop a "sampling theory" [12,20].

In this article we want to derive a scheme of sampling that
permits a principle view of sampling, its different meth-
ods, and to calculate the efficiency of the used sampling
method. In principle, two different algorithms exist, the
random sampling and the stratified sampling [12,9]. Ran-
dom sampling has to be performed, if no knowledge of
the information searched for exists. It is the appropriate
technique to measure features of biological units such as
chromosomes, DNA fragments, nuclei, cells, vessels, etc.
Its accuracy (error rate) can be predefined by number and
size of the chosen samples in relation to the expected size
of events and to the reference space. Its results can be
implemented in additional classification algorithms, such
as diagnostic procedures. The sampling can be terminated
if a certain classification can be performed with a prede-
fined accuracy, i.e, a diagnosis can be assessed with high
certainty. The accurate measurement of events' features is
a prerequisite, but not the aim of stratified sampling. Its
implementation requires additional (external) informa-
tion, and numerous investigations have been performed
to "speed up" the procedure (or to make it more efficient)
using spatial structures within the reference space. When
an exponential event probability distribution is given,
Krige's formula can be derived from stratified sampling.

In addition to the discussed principle differences between
random and stratified sampling procedures, passive and
active sampling plays a major role in image segmentation
algorithms. The common principle of active sampling
associates neighbourhood knowledge (i.e. knowledge
derived from general external observations) to the object
under investigation, for example to accurately define its
boundaries [18]. Especially in measuring accurate thresh-
olds for grading purposes in immunohistochemistry this
approach has been proven to be successful [2]. A further-
more derived application is the functional sampling,
which is again a stratified sampling in principle. This pro-
cedure can assist to investigate in the "biological impor-
tance" of rare events, which is widely not known to our
experience.

In aggregate, a general theory of sampling is derived that
possesses its applications in numerous, if not all natural
sciences. They range from agriculture to mining, from air-
craft maintenance to medicine. In surgical pathology it is
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of major importance that all diagnostic investigations
start with appropriate sampling.
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