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Abstract 

Background: Lack of knowledge around underlying mechanisms of gliomas mandates intense research efforts to 
improve the disease outcomes. Identification of high‑grade gliomas pathogenesis which is known for poor progno‑
sis and low survival is of particular importance. Distinguishing the differentially expressed genes is one of the core 
approaches to clarify the causative factors.

Methods: Microarray datasets of the treatment‑naïve gliomas were provided from the Gene Expression Omnibus 
considering the similar platform and batch effect removal. Interacting recovery of the top differentially expressed 
genes was performed on the STRING and Cytoscape platforms. Kaplan–Meier analysis was piloted using RNA 
sequencing data and the survival rate of glioma patients was checked considering selected genes. To validate the 
bioinformatics results, the gene expression was elucidated by real‑time RT‑qPCR in a series of low and high‑grade 
fresh tumor samples.

Results: We identified 323 up‑regulated and 253 down‑regulated genes. The top 20 network analysis indicated that 
PTX3, TIMP1, CHI3L1, LTF and IGFBP3 comprise a crucial role in gliomas progression. The survival was inversely linked 
to the levels of all selected genes. Further analysis of RNA sequencing data indicated a significant increase in all five 
genes in high‑grade tumors. Among them, PTX3, TIMP1 and LTF did not show any change in low‑grade versus con‑
trols. Real‑time RT‑qPCR confirmed the in‑silico results and revealed significantly higher expression of selected genes 
in high‑grade samples compared to low‑grade.

Conclusions: Our results highlighted the role of PTX3 and TIMP1 which were previously considered in glioma tumo‑
rigenesis as well as LTF as a new potential biomarker.
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Introduction
Gliomas, the most prevalent and aggressive type of brain 
tumors, are classified by the world health organization 
(WHO) as grade I-IV according to clinical and histo-
pathological characteristics. Grade I comprise benign 

and relatively low-risk gliomas. Grade II is known as 
low-grade gliomas (LGG), displaying well-differentiated 
tumor cells with a better prognosis. WHO grade III-IV 
classifications include high-grade gliomas (HGG). They 
are characterized by undifferentiated cells and consist 
of anaplastic gliomas (grade III) and glioblastoma multi-
forme (GBM) (grade IV) [1].

LGG, which generally affects young adults with an aver-
age age of 40, eventually leads to GBM and death with a 
survival of fewer than ten years. In recent years, a new 
classification has been proposed by the WHO regarding 
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the status of the isocitrate dehydrogenase (IDH) gene. 
Tumors bearing mutations in IDH are sub-classified into 
secondary GBM, indicating that they are originated from 
a LGG tumor [2]. However, about 90% of GBM are  de 
novo cases with poor prognosis and a median survival of 
around one year [3].

Despite the significant advances in understanding glio-
mas genomic alterations, the molecular basis of HGG 
remains to be explored. The high molecular heterogene-
ity of gliomas could explain the complexity of its progno-
sis prediction [4].

The clinical aggressiveness within gliomas has been 
explored by the development of high‐throughput tech-
nologies [5]. Glioma-related bioinformatics studies 
mostly conducted by using the online available microar-
ray datasets such as Gene Expression Omnibus (GEO) 
[6], The Cancer Genome Atlas (TCGA) [7] and Array-
Express [8]. However, shortcomings in sample selection, 
including de-novo versus secondary GBM and treatment-
naïve versus treatment-experienced have led to heteroge-
neous outcomes of differentially expressed genes (DEGs). 
Diverse data processing methods and technological plat-
forms could be mentioned as additional confounding 
factors and may result in controversies. Integrated bioin-
formatics and co-expression networks analysis assist net-
work-based gene screening and strengthen the statistical 
analysis [9].

In the present study, by the integrative and network-
based approach, we analyzed DEGs between adult LGG 
and HGG. We also determined the involved signaling 
pathways and potential molecular interactions that are 
significantly associated with WHO grading and progno-
sis. DEGs revealing major alterations in their network 
interactions between LGG and HGG were selected for 
further validation in patient’s tumor samples.

Materials and methods
Data integration, batch effect removal
GSE4290, GSE15824, GSE19728, GSE43378, and 
GSE51062 microarray expression datasets were collected 
from the GEO database (http:// www. ncbi. nih. gov/ geo) 
using the GEO query package of R software. All of the 
selected microarrays had been performed on treatment-
naïve adult gliomas by the GPL570 detection platform. 
The datasets comprised a total of 345 samples, including 
HGG, LGG, glioma cell lines, and normal brain tissues. 
The samples of the normal brain, cell lines, unknown 
subtypes and secondary or recurrent tumors were 
excluded from the study and ultimately 301 treatment-
naïve adult samples including 238 HGG and 63 LGG 
were recruited for the subsequent analysis. The average 
expression value of all mapped probe sets was considered 

for each gene. The preprocessed expression datasets were 
merged by the R program into one global expression 
matrices according to the gene symbol. Using the combat 
method in R, the technical heterogeneity or batch effect 
was removed across the datasets.

DEGs identification
The limma package of R was utilized to determine 
the DEGs between LGG and HGG in a linear model. 
To decrease the false positive rate and false discovery 
rate the cut-off criteria of |log2FC|> 1 and an adjusted 
P-value < 0.001 were selected. The results were presented 
in a volcano plot of log-fold changes on the X-axis versus 
adjusted statistical significance on the Y-axis.

Functional annotation and pathway analyses
Gene Ontology (GO) enrichment analysis and pathway 
enrichment analysis based on and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathways were con-
ducted by Database for Annotation, Visualization, and 
Integrated Discovery (DAVID) online tool (https:// david. 
ncifc rf. gov/). The p-value ˂0.05 was considered statisti-
cally significant.

Construction of protein–protein interaction network
The STRING online tool (https:// string- db. org) [10] was 
constructed to generate the protein–protein interac-
tion (PPI) network of the top 20 up and down-regulated 
DEGs. To recognize the target genes, the PPI network 
was visualized by the network analyzer in the Cytoscape 
software (version 3.8.2, http:// www. cytos cape. org/) [11].

Top DEGs validation by glioma RNA sequencing data
DEGs with significant protein–protein interactions 
were selected for further assessments through the Gene 
Expression Profiling and Interactive Analyses (GEPIA) 
online RNA sequencing-based database (http:// gepia. 
cancer- pku. cn) [12]. This database represents the gene 
expression variations in cancer samples based on data 
from TCGA and The Genotype-Tissue Expression 
(GTEx). Kaplan–Meier and Cox proportional hazard 
analysis were conducted to check the survival rate of 
glioma patients by subgrouping into the low and high 
expression of selected genes.

By the comparison between GBM, LGG and healthy 
tissue, the expression levels of selected genes were pre-
sented as mean (standard deviation) in boxplots. A 
p-value ˂0.01 was considered statistically significant.

Patient’s samples collection
To validate the in-vitro expression of selected hub genes, 
we obtained a series of fresh LGG and HGG samples. 

http://www.ncbi.nih.gov/geo
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
https://string-db.org
http://www.cytoscape.org/
http://gepia.cancer-pku.cn
http://gepia.cancer-pku.cn
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Fig. 1 PCA scatter plot based on gene expression profiles in 301 samples from 5 datasets. Left: Merged datasets before batch effect correction; 
datasets are specified with different colors. LGG and HGG samples are shown with circle and triangle symbols, respectively. Right: Merged datasets 
after batch effect correction; blue and red dots are shown HGG and LGG samples, respectively

Fig. 2 Volcano plot visualizing the DEGs in a total of 22,189 genes; green points represent 323 upregulated and red represents 253 down‑regulated 
genes
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The research was approved by the Ethics Committees 
of Tarbiat Modares University and performed under the 
Helsinki declaration of 1975, as revised in 2013. Follow-
ing informed consent, 11 LGG and 11 HGG tissue sam-
ples were collected from Shariati hospital, Tehran, Iran. 
A part of the tumor samples was sent for pathological 
analysis.

Gene expression analysis
Total mRNA of the samples was extracted by the All-
In-One kit (Bio Basic, Canada). The reverse transcrip-
tion-quantitative polymerase chain reaction (RT-qPCR) 
was performed on extracted mRNA as described before 
[13]. For normalizing target genes, we selected eukaryotic 
translation initiation factor 2B subunit alpha (EIF2B1) as 
the reference gene [14]. By evaluation on GEPIA, EIF2B1 
showed higher expression and lower fluctuation com-
pared to other recommended reference genes such as 
C-terminal binding protein 1 (CTBP1), mitochondrial 
ribosomal protein L9 (MRPL19) and TATA box-binding 
protein (TBP).

The primer sequences of selected and reference genes 
were as follow: forward PTX3 5’-TGC ATC TCC TTG 
CGA TTC TGT-3’, reverse PTX3 5’-AGC TTG TCC CAT 
TCC GAG TG-3’, forward CHI3L1 5’-ATG ATG TGA CGC 
TCT ACG GC-3’, reverse CHI3L1 5’-ACT CTG GGT GTT 
GGA GGC TA-3’, forward IGFBP3 5’-CAG AAT ATG GTC 
CCT GCC GTAG-3’, reverse IGFBP3 5’-TTT GGA AGG 
GCG ACA CTG C-3’, forward TIMP1 5’-GCT TCT GGC 
ATC CTG TTG TTG-3’, reverse TIMP1 5’-GGT GGT CTG 
GTT GAC TTC TGG-3’, forward LTF 5’-ATC GCC CTG 
GTG CTG AAA G-3’, reverse LTF 5’- GGG TCA CTG CTT 
TGT TGG GA-3’, forward IEF2B1 5’-CGG ACG TTG CTG 
GAG TTC TT-3’, reverse EIF2B1 5’-AGG CAA GAC TGA 
TGA AGC GG-3’.

To perform statistical analysis, the Mann–Whitney test 
was applied for the comparison of the groups. GraphPad 
Prism8 was used to generate plots signifying the levels of 
gene expression. A difference of p-value ˂0.05 was con-
sidered statistically significant.

Results
Identification of DEGs in merged datasets
The principal component analysis (PCA) as an unsu-
pervised clustering approach was constructed to clas-
sify LGG and HGG samples before and after batch effect 
corrections. The proper discrepancy between LGG and 
HGG samples was detected before adjusting the batch 
effect. Admissible clustering was reached following batch 
effect removal (Fig. 1). According to the PCA results, five 
samples were considered an outlier and were removed 
from the subsequent analysis. By merging the datasets, a 
total of 22,189 common genes were considered for fur-
ther analysis. A total of 576 DEGs were identified com-
prising 323 upregulated and 253 down-regulated genes. 
The results were illustrated as a volcano plot in Fig. 2, in 
which the up and down-regulated genes are represented 
in green and red dots, respectively.

Functional annotation and pathway analyses
To discover the biological functions of the identified 
DEGs, the up-regulated and down-regulated genes 
were separately enriched in three categories regarding 
the molecular function, biological process, and cellu-
lar component. The up-regulated DEGs in the molecu-
lar function class were mainly enriched in extracellular 
matrix (ECM) structural constituent, heparin, integrin 
and PDGF binding. These DEGs were also significantly 
enriched in the ECM organization, angiogenesis and 
cell division in the biological process. In the cellular 

Fig. 3 Top three pathways analysis of molecular function (MF), biological process (BP) and cellular components (CC) of GO, as well as KEGG analysis 
results. Left; up‑regulated DEGs, Right; down‑regulated DEGs
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component category, they were enriched in the ECM, 
extracellular space, and extracellular region. According to 
the KEGG pathway analysis, the up-regulated DEGs were 
frequently enriched in ECM-receptor interaction and 
focal adhesion (Fig. 3).

Construction of PPI network
The top 20 most significant up and down-regulated 
DEGs are shown in Table 1. The identified top 20 DEGs 
were mapped into the STRING database to find the 
interactions between their corresponding proteins. The 
construction of DEGs networks indicated significant 
interactions between pentraxin 3 (PTX3), chitinase-
3-like protein 1 (CHI3L1), insulin-like growth factor-
binding protein 3 (IGFBP3), tissue inhibitor of matrix 
metalloproteinases 1 (TIMP1) and lactotransferrin 
(LTF). As illustrated by Cytoscape software in Fig.  4, 
the 25 genes of the top 20 DEGs interact to each other, 
amongst them TIMP1, CHI3L1 and PTX3 have the most 
interface.

In‑silico validation of candidate genes
The expression levels of candidate genes were further 
assessed in 163 HGG, 518 LGG and 207 healthy patients’ 
samples on the GEPIA web server. Initially, the correla-
tion between gene expression and overall survival of 
glioma were assessed by Kaplan–Meier analysis. The 
patient’s survival in high mRNA expression levels of all 
five selected genes was less than that in the low expres-
sion group (Fig. 5).

By dividing glioma patients into GBM and LGG groups, 
the expression level of candidate genes in each of these 
groups was compared with normal samples. The data 
indicated a significant increase in all five genes in GBM 
compared to LGG and control tissues. Gene expres-
sion levels of IGFBP3 and CHI3L1 significantly differed 
between LGG and normal brain tissue. However, the 
expression of PTX3, TIMP1 and LTF were not altered in 
LGG versus controls indicating their specificity in GBM 
pathogenesis (Fig. 6).

Patient’s characteristics
The treatment-naïve glioma cases included eight male 
and fourteen female patients, with an average age of 
52 ± 15  years old. The LGG samples consisted of five 
cases of diffuse oligodendroglioma (grade II) and six 
cases of diffuse astrocytoma (grade II), and the HGG 
samples included five cases of anaplastic astrocytoma 
(grade III) and six cases of glioblastoma multiform 
(grade IV).

In vitro validation of gene expression by RT‑qPCR
We conducted an RT-qPCR and confirmed the in-silico 
expression data of PTX3, IGFBP3, TIMP1, CHI3L1 and 
LTF. Normalized results of the expression, relative to the 
expression level of EIF2B1 mRNA indicated significantly 
higher expression of selected genes in HGG compared to 

Table 1 Top 20 up‑regulated and down‑regulated differentially 
expressed genes between LGG and HGG

Gene Symbol Log2FC Adj.P.value

LTF 3.57 4.45E‑11

IGFBP2 3.38 1.38E‑19

TIMP1 2.57 4.09E‑17

NNMT 2.64 1.80E‑13

SERPINH1 2.63 1.97E‑14

COL4A1 2.49 3.31E‑16

CHI3L1 2.44 4.84E‑14

EMP3 2.37 4.09E‑17

IL13RA2 2.27 1.54E‑09

VMP1 2.22 1.53E‑15

SPOCD1 2.18 6.20E‑11

SERPINA3 2.12 7.18E‑14

COL4A2 2.12 4.09E‑17

KIF20A 2.11 1.54E‑13

PTX3 2.07 2.97E‑11

FOXM1 2.04 1.27E‑12

CA3 2.02 1.02E‑12

IGFBP3 1.99 6.32E‑14

FCGBP 1.97 4.06E‑12

TACC3 1.93 1.91E‑13

FSTL5 ‑2.64 4.56E‑12

NTSR2 ‑2.56 1.50E‑08

SFRP2 ‑2.49 5.42E‑12

ETNPPL ‑2.45 4.62E‑11

KLRC2 ‑2.40 1.63E‑09

CSMD3 ‑2.27 4.37E‑17

SNAP91 ‑2.04 7.14E‑09

CNTN3 ‑2.04 6.35E‑10

HMP19 ‑2.00 8.28E‑10

SPHKAP ‑1.95 1.49E‑13

MGAT4C ‑1.91 4.28E‑12

SMOC1 ‑1.86 6.48E‑11

PTPRT ‑1.85 1.33E‑10

SH3GL2 ‑1.85 2.74E‑09

ZNF488 ‑1.82 3.33E‑07

KLRC3 ‑1.82 3.70E‑11

FAM133A ‑1.81 4.20E‑16

INA ‑1.81 6.74E‑10

PRLHR ‑1.78 2.82E‑11

SELL ‑1.76 3.68E‑12
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LGG (p-value < 0.05) (Fig. 7). The highest fold changes of 
2.33 and 2.23 were calculated for TIMP1 and LTF, respec-
tively. CHI3L1 and IGFBP3 exhibited almost a twofold 
increase, while PTX3 disclosed fold change of 1.67 in 
HGG compared to LGG.

We could not detect significant expression differences 
related to patients’ age, sex, tumor size and/or tumor 
location.

Discussion
HGG is considered a challenging subtype of brain tumors 
with a poor prognosis, aggressive features and lack of 
targeted therapies. Although many efforts have been 
made to develop effective treatments, tumor heterogene-
ity and unknown contexts remain limitations of discov-
ered therapies [15]. Identification of the key genes and 
pathways involved in HGG pathogenesis is of particular 
importance to develop new therapeutic approaches. In 
recent decades, high throughput technologies produce 
huge data that are helpful for a well understanding of the 
molecular basis of tumorigenesis.

Here, we analyzed multiple expression array datasets 
to compare gene expression profiles of HGG versus LGG 
to provide the critically involved genes. Our results elu-
cidated that the PTX3 gene acts as a master regulator in 
the HGG gene regulatory network by connectivity to four 

other DEGs. Compared to LGG, HGG showed increased 
PTX3 mRNA levels in patients’ tumor samples. PTX3 is 
mainly involved in immune responses and inflammation; 
however also plays various roles in multiple molecular 
mechanisms such as cell cycle, angiogenesis, metastasis, 
and genomic instability [16]. Dysregulation of PTX3 is 
associated with the early event in oncogenesis and may 
be acting as an initiating factor. By in  vitro inactivation 
of PTX3, GBM cells migration and invasion were signifi-
cantly eliminated [17].

Among the genes that showed a strong link with PTX, 
the TMP1 was already known to be associated with dete-
riorating and poor prognosis of glioma [18]. Aaberg-Jes-
sen et al. investigated the prognostic potential of TIMP1 
in combination with its cell surface binding protein, 
CD63, correlated to tumor grade and overall survival of 
glioma patients. However, no additional prognostic sig-
nificance of TIMP1 was observed by including the CD63. 
They also analyzed DEGs comparing the highest and low-
est CD63 mRNA level tumors using the TCGA dataset. 
They reported TIMP1, PTX3 and CHI3L1 among the 
upregulated DEGs involved in the regulation of cell sur-
vival and cellular movement [19].

In our study, we observed that mRNA expression 
of CHI3L1, also known as YKL-40, was significantly 
higher in HGG either by in silico or in vitro analysis. It is 

Fig. 4 Protein–protein interaction network illustrated by Cytoscape software. The 25 genes of the top 20 DEGs interact with each other amongst 
them TIMP1, CHI3L1 and PTX3 have the most interactions. The green nodes represent upregulated genes, whereas nodes in red represent 
down‑regulated genes. The Yellow circles contain upregulated hub DEGs with interactions to PTX3. Transcription factors are in triangular shape. The 
arrows represent the direction of interactions
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expressed as a mesenchymal marker in the most aggres-
sive and challenging subtype of GBM associated with 
particularly poor outcome [20]. CHI3L1 is a secreted gly-
coprotein and is suggested as a promising serum marker 
for GBM diagnosis [21]. However, it has more diagnostic 
value in recurrent GBM than newly diagnosed patients 
[22].

Among up-regulated genes found in our study, LTF 
transcript was marked as the first ranked (Table  1); 
however, its promoting role in tumorigenesis is not evi-
dent. As an iron-binding protein, LTF has a wide spec-
trum of protective activities such as anti-microbial and 
immunity. Studies in nasopharyngeal carcinoma and 
prostate cancer suggested a tumor suppressor function 
for LTF [23, 24].

Using GEPIA, we found that the expression of PTX3, 
TIMP1 and LTF were specificity high in GBM, whereas 
they were not altered in LGG compared to normal con-
trols. One of the suggested mechanisms that can be 
shared between their functions is the inflammatory 

process. Correlation to inflammatory in glioma tumo-
rigenic processes has been demonstrated by different 
studies. Increased expression of PTX3 under the influ-
ence of transcriptional factor CCAAT / enhancer-bind-
ing protein delta (CEBPD) has been shown to inhibit the 
phagocytosis of dying neurons [25]. CEBPD also regu-
lates the stemness of glioma cells by activating platelet-
derived growth factor subunit A (PDGFA) expression 
due to inflammatory stimulation. As mentioned before, 
inflammation is one of the important processes in the 
development of GBM and response to treatment [26, 27]. 
It should be noted that LTF was previously reported as 
putative interactors of CEBPD [28].

We also found IGFBP3 among the top 20 DEGs that 
showed strong involvement with PTX3. IGFBP3 plays 
a direct role in signaling and cell growth pathways in 
association with insulin-like growth factor (IGF) 1 and 
2. Although studies have suggested a tumor-suppressive 
role for IGFBP-3, ample evidence in various cancers indi-
cates that its high levels were associated with disease 

Fig. 5 Kaplan–Meier survival curves using The Cancer Genome Atlas database validate the prognostic value of genes expressed in gliomas (blue—
low risk; red—high risk)
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Fig. 6 The GEPIA database results for the expression level of selected genes. The y axis represents log2(TPM + 1). TPM: transcripts per million

Fig. 7 Mean relative expression of LTF, IGFBP3, CHI3L1, TIMP1 and PTX3 in HGG compared to LGG in patient samples



Page 9 of 10Ahmadi‑Beni et al. Diagnostic Pathology           (2022) 17:73  

aggressiveness [29]. In a recent study on hepatocellular 
carcinoma, IGFBP3 was found highly expressed asso-
ciated with disease poor prognosis [30]. By analyzing 
TCGA and GTEx data, we observed a significant IGFBP3 
increase in HGG compared to normal brain tissues. 
However, IGFBP3 gene expression was also higher in 
LGG than in normal controls. It may be considered that 
IGFBP3 stimulates the tumorigenesis in both LGG and 
HGG probably via different pathways.

Conclusions
As a conclusion, we identified robust differentially 
expressed genes associated with HGG and highlighted 
some important features of HGG tumors such as inflam-
mation and stemness. These findings could enhance our 
knowledge about the molecular mechanisms underlying 
HGG tumors and provided reliable biomarkers for novel 
prognostic and therapeutic targets.
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