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Utilizing deep learning model for assessing 
melanocytic density in resection margins 
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Abstract 

Background  Surgical excision with clear histopathological margins is the preferred treatment to prevent progression 
of lentigo maligna (LM) to invasive melanoma. However, the assessment of resection margins on sun-damaged skin 
is challenging. We developed a deep learning model for detection of melanocytes in resection margins of LM.

Methods  In total, 353 whole slide images (WSIs) were included. 295 WSIs were used for training and 58 for valida-
tion and testing. The algorithm was trained with 3,973 manual pixel-wise annotations. The AI analyses were com-
pared to those of three blinded dermatopathologists and two pathology residents, who performed their evaluations 
without AI and AI-assisted. Immunohistochemistry (SOX10) served as the reference standard. We used a dichotomized 
cutoff for low and high risk of recurrence (≤ 25 melanocytes in an area of 0.5 mm for low risk and > 25 for high risk).

Results  The AI model achieved an area under the receiver operating characteristic curve (AUC) of 0.84 in discriminat-
ing margins with low and high recurrence risk. In comparison, the AUC for dermatopathologists ranged from 0.72 
to 0.90 and for the residents in pathology, 0.68 to 0.80. Additionally, with aid of the AI model the performance of two 
pathologists significantly improved.

Conclusions  The deep learning showed notable accuracy in detecting resection margins of LM with a high ver-
sus low risk of recurrence. Furthermore, the use of AI improved the performance of 2/5 pathologists. This automated 
tool could aid pathologists in the assessment or pre-screening of LM margins.
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Background
Melanomas arising in extensively sun-damaged skin, 
identified by pronounced solar elastosis, are catego-
rized as high chronic sun-damaged (high-CSD) mela-
nomas. These tumors demonstrate distinctive clinical 
and genetic characteristics. Lentigo maligna melanoma 
(LMM), a variant of high-CSD melanoma, has a precur-
sor lesion referred to as lentigo maligna (LM). This in situ 
variant is distinguished by the lentiginous proliferation of 
predominantly individual cytologically atypical melano-
cytes within the basal epidermis [1].

Precise evaluation of residual tumor presence within 
resection margins is crucial in both the assessment and 
subsequent treatment of patients afflicted with LM and 
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LMM [2]. Distinguishing between LM and sun-induced 
melanocytic hyperplasia also poses a significant chal-
lenge for pathologists involved in assessing the com-
pleteness of resection margins. The subtle features of LM 
can be difficult to identify, in particular at the edges of 
the lesion where histopathologic features may resemble 
those found in unaffected, sun-damaged skin [3, 4]. One 
of the key criteria utilized for this differentiation is the 
increased number of junctional melanocytes observed in 
hematoxylin and eosin- (H&E) stained sections in com-
bination with histological features including melanocytic 
nests, irregular distribution of melanocytes, descent of 
melanocytes far down adnexal epithelial structures and 
melanocytic pleomorphism [5, 6]. Given the time-con-
suming and challenging process of evaluation of resec-
tion margins, it is evident that new solutions are needed.

Several published studies have identified a greater 
average melanocytic density in LM compared to sun-
induced melanocytic hyperplasia [7, 8]. Immunohisto-
chemistry (IHC) can be used to facilitate the evaluation 
of resection margins [9, 10]. SOX10-staining increases 
the observed melanocytic density (MD) as compared to 
H&E-staining when evaluating the surgical margins of 
LM [11]. Furthermore, the utilization of SOX10 staining 
notably reduces interobserver variability among patholo-
gists [12]. Previously MD of ≥ 25 melanocytes in a 0.5-
mm long field at the resection margin has shown to be a 
robust predictor of LM recurrence [8].

Employing digital whole slide imaging (WSI) facilitates 
the integration of artificial intelligence (AI) into digital 
pathology [13]. This integration provides a potential to 
increase diagnostic precision, while also to reduce the 
time to diagnosis and the interobserver variability [14–
16]. However, there are only a few studies regarding the 
use of AI in assessment of histopathological resection 
margins [17]. Deep learning models are widely applied on 
melanoma diagnostics [14]. However, there are no previ-
ous publications to our knowledge regarding deep learn-
ing methods in assessment of the LM resection margins.

The aim of this study was to investigate the feasibility 
of a deep learning algorithm for automated evaluation of 
MD in resection margins of LM and assessment of the 
recurrence risk. Additionally, we aimed to assess whether 
the performance of individual pathologists could improve 
with the assistance of AI.

Methods
Dataset
The inclusion criteria were LM excised and histopatho-
logically verified at the Department of Pathology at Sahl-
grenska University Hospital between January 1, 2020 
and May 10, 2023 with a representative haematoxyllin-
eosin (H&E)-stained glass slide from formalin-fixed and 

paraffin-embedded tissue available for scanning. In total, 
355 cases fulfilled these criteria. Cases with both posi-
tive and negative margins were collected. A single slide 
per case containing either the closest surgical margin or 
harboring the highest MD at the margin was included in 
the study. This was evaluated by an experienced dermato-
pathologist (JS). The glass slides were anonymized and 
then digitally scanned for WSI with a 40 × mode Nano-
zoomer S210 Digital Slide Scanner (Hamamatsu Photon-
ics K.K., Shizuoka, Japan) with a resolution of 0.23 µm/
pixel and using a 20 × objective lens. After scanning, two 
H&E WSIs needed to be excluded due to poor image 
quality.

Thus, the dataset included 353 H&E-stained WSIs. 
However, the developed AI model was trained and tested 
on smaller regions selected on these WSIs. The train-
ing set consisted of 729 regions within 295 WSIs. The 
remaining 58 WSIs were used to define an additional 88 
regions, with 33 used for validation and 58 for testing, 
(Table 1).

Immunostainings and ground truth
In cases where additional SOX10-stained slides were 
available in the archives (n = 65), these were scanned 
along with the H&E slides. These cases were included 
in the training set in order to facilitate the annotations. 
Furthermore, for all 58 WSIs included in the test and 
validation set, new serial sections were acquired. The 
first section was stained with H&E and the following 
consecutive Sect. (4 μm between each slide) was stained 
with SOX10 (AVI 3099G, Ready-to-use, Clone BC34, 
Mouse Monoclonal Primary Antibody, BioCare Pacheco, 
CA, USA). Automated immunohistochemistry was per-
formed on an AutoStainer Link-instrument (Agilent 
Dako, Copenhagen, Denmark) using the EnVision Flex 
K8000 (Agilent Dako, Copenhagen, Denmark), a high pH 
detection kit. Thus, 123 SOX10 WSIs (65 SOX10 slides 
for the training set and an additional 58 SOX10 slides 

Table 1  The number of included lentigo maligna whole slide 
images included in the training and the validation and test set 
and their corresponding training, validation and test regions

*65 with available SOX10

**SOX10 available for all cases

WSI whole slide image

H&E  hematoxylin and eosin

H&E WSIs Regions

Training set 295* 729 training regions

Test and validation set 58** 30 validation regions
58 test regions

Total 353 817 regions
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for the validation and test set) were available to facilitate 
the annotations and to serve as ground truth for testing 
and validating. The MD on SOX10 slides served as the 
ground truth.

Annotations
The training annotations were performed only on the 
training set while the test and validation WSIs were kept 
unannotated. The annotations were done manually by 
an experienced dermatopathologist with help of SOX10 
when this was available (n = 65). In total, 3,973 melano-
cytes were manually annotated with a chosen diameter 
size of 10 μm and regardless of cellular atypia. Both len-
tiginous and nested growth patterns were annotated.

Training the AI model
The AI model was generated using Aiforia Create Version 
5.3 (Aiforia Technologies Plc, Helsinki, Finland), a com-
mercial image management and analysis cloud platform 
which aids the development of a machine learning model 
with a convolutional neural network (CNN) and super-
vised learning. The annotations were provided as pixel-
level segments. The trained CNNs produced semantic 
segmentation at pixel level meaning that each pixel is 
predicted to belong to either the foreground or back-
ground class. The segmentation-based outcome predic-
tion was done using semantic segmentation. Here, a fully 
supervised pixel-level input was provided by the expert 
pathologist with help of IHC. The algorithm was trained 
to detect melanocytes according to the annotations.

To create the final AI model, a total of eleven train-
ing sessions were performed. After each training, addi-
tional annotations in the training set WSIs were made. 
Depending on the layer complexity, the training was 
programmed to prematurely terminate if the learning 
curve was not steep enough. This could directly be seen 
by the training loss function. Hence, a lower error per-
centage could be expected if the training loss was mini-
mal after all the training rounds were reached, which 
is generally defined by a non-significant increase in the 
training curve. The final training was performed for 7,000 
iterations out of which 4,452 iterations were executed 
(training loss 0.71). All 729 training regions were used, 
and verifications were carried out to yield an error of 
8.6% (F1 Score; 95.6%). Patches that were used in train-
ing and inference were extracted from the image pyramid 
at a level that is dependent on the field of view (region 
layer) or object size (object layer). Morphometric analysis 
was enabled for the AI model prior to the image analy-
sis run. Image analysis was performed in the Aiforia Hub 
for WSIs in multiple batches. Data was visually moni-
tored, and the pixel-level segmentation outcome was 
generated using Microsoft Excel (Microsoft Corporation, 

Redmond, Washington, USA). The patch level informa-
tion was extrapolated to slide level with the help of aggre-
gated pixel-level segmentation outcomes.

Validating the AI model
The performance of the AI model was validated on unan-
notated areas of WSIs using a pixel-wise validation. The 
validation of the potential performance of the algorithm 
was done prior to running the analyses on the test set. A 
total of 33 regions were used. These regions were manu-
ally drawn and were 0.5 mm in length and, similar to the 
ones in the test set, these only included the epidermal 
surface. The regions were unique for the validation and 
were not used in the training or test sets. The validation 
was done by comparing the AI analyses on the validation 
region to MD assessed by one dermatopathologist and 
compared to the ground truth (MD on SOX10-stained 
validation regions).

Testing the AI model
The performance of the algorithm was tested against five 
pathologists as described below against the ground truth 
(MD on SOX10-stained test regions). An area measuring 
0.5 mm in length from the resection margin was super-
imposed on the image at the surgical margin. The sub-
epidermal tissue was excluded since the analyzed region 
only covered the epidermis including adnexal structures.

Similar regions were digitally drawn on consecutive 
SOX10-stained slides. The MD on these regions were 
used as ground truth. Using the recurrence prediction 
model by Gorman et al [8], each region in the test set was 
labeled as low-risk or high-risk. A low-risk region was 
defined as having a MD of ≤ 25 melanocytes in an area 
of 0.5 mm in the resection margin and a high-risk region 
was defined as having > 25 melanocytes. A false negative 
result was defined as not being able to identify high-risk 
regions and a false positive result was defined as wrongly 
labeling a low-risk region as high-risk.

Assessment by the pathologists
Three dermatopathologists (two with over 10 years of 
experience, considered senior dermatopathologists, and 
one with 2 years of experience, considered a junior der-
matopathologist) independently counted the melano-
cytes on the test regions. They were blinded to the AI 
results, each other’s evaluations, and the original pathol-
ogy reports. The pathologists could use variable digital 
magnifications to evaluate the slides and only had access 
to the H&E slides but didn’t have access to the SOX10 
slides. There were no time constraints, and the results 
were reported separately for each region. This initial 
assessment was defined as round 1.
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After a washout period of at least two weeks, the 
procedure was repeated (round 2) with the patholo-
gists aided by the AI algorithm. Within each region, a 
green visualization overlay depicted the cells identified 
as positive by the AI, (Fig.  1). While the analysis tool 
could be hidden, the pathologists had the option to 
disregard this supplementary information or integrate 
it into their melanocyte counting process.

Statistical analysis
No prior in-house data were available regarding the 
performance of an AI algorithm for this task. There-
fore, no power analysis was used to predetermine an 
appropriate sample size. All data were analyzed using 
R version 3.5.3 (https://​www.r-​proje​ct.​org/) together 
with a trained statistician.

The gain parameter regulates the CNN’s sensitiv-
ity in identifying pixels associated with a specific fea-
ture class. Augmenting the gain enhances the CNN’s 
capacity to identify pixels within the designated fea-
ture class. A receiver operating characteristic (ROC) 
curve was generated by using a cutoff of 26 melano-
cytes for both the true label and all the gain settings. 
Each point on this ROC curve therefore represents one 
gain setting. One ROC curve for each gain setting was 
also generated, treating the true label in the same way 
as above (cutoff at 26 melanocytes) but where the AI 
outcome for each gain is treated as a latent continu-
ous variable, varying the threshold over all available 
values, generating an ROC curve and an area under 
the ROC (AUC) for each gain setting (seven different 
gains). Also, the pathologists’ ROC curves were gen-
erated in the same way. When comparing two ROC 
curves, DeLong’s paired test was used. All statistical 
tests were two-sided and P < 0.05 was considered sta-
tistically significant. Fleiss kappa was used to compare 
the inter-pathologist agreement.

Results
The recurrence risk assessment
Of the 58 regions included in the test set, 22 (37%) har-
bored > 25 melanocytes on the reference SOX10 regions 
and defined as high-risk margins while 36/58 (62%) har-
bored < 25 melanocytes and were defined as low-risk 
resection margins.

Round 1 without the aid of AI
The AI model’s performance in detection of high-risk 
resection margins demonstrated an AUC of 0.84 (95% 
CI: 0.73–0.96), (Fig. 2). For comparison, the AUCs for the 
three dermatopathologists were 0.72 (95% CI: 0.58–0.86), 
0.89 (95% CI: 0.79–0.99) and 0.90 (95% CI: 0.81–0.99), 
while the AUCs for the two residents were 0.68 (95% CI: 
0.54–0.83) and 0.80 (95% CI: 0.68–0.93).

The sensitivity for predicting high-risk regions was 45% 
(95% CI: 24–68%), 46% (95% CI: 24–68%) and 54% (95% 
CI: 32–76%) for the respective dermatopathologists and 
36% (95% CI: 17–59%) and 64% (95% CI: 41–83%) for the 
residents compared to the AI’s sensitivity of 81% (95% CI: 
60–95%). The specificity was 100% (95% CI: 90–100%), 
100% (95% CI: 90–100%) and 97% (95% CI: 85–100%) for 
the dermatopathologists and 91% (95% CI: 77–98%) and 
100% (95% CI: 90–100%) for the residents compared to 
71% for the AI (95% CI: 54–85%).

As a result, in the first round, the AI outperformed the 
junior dermatopathologist (p = 0.004) and one resident 
(p = 0.01). There was no statistically significant differ-
ence between the AI and the other pathologists (p-values 
ranging between 0.14 and 0.43).

Round 2 with the aid of AI
In the second round, when the pathologists were aided by 
the AI, the performance of the junior dermatopathologist 
and one of the residents in pathology was significantly 
improved in comparison to round 1, (Fig.  3) and their 
AUCs increased from 0.84 (95% CI: 0.73–0.96) to 0.93 
(95% CI: 0.85–1.00, p = 0.029) and from 0.68 (95% CI: 
0.54–0.83) to 0.81 (95% CI: 0.69–0.94, p = 0.0057).

Fig. 1  Representative images from one of the test regions with the black circle marking the area to be assessed: a H&E-stained slide without AI 
assistance, b H&E-stained slide with AI assistance showing green overlaid dots where the model identified melanocytes, and (c) SOX10 stain used 
as ground truth and not available for the evaluators

https://www.r-project.org/
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Furthermore, with the aid of the AI, the two senior der-
matopathologists, performed significantly better than the 
AI model itself (Additional files Fig.  1) and their corre-
sponding AUCs increased from 0.89 to 0.93 (p = 0.042, 
95% CI: 0.85–1.00) and from 0.90 to 0.93 (95% CI: 0.85–
1.00, p = 0.033).

The interobserver agreement for all five pathologists 
was 0.62 (95% CI: 0.54–0.70) in the first round which is 
generally interpreted as "substantial agreement”. With 
the integration of AI in round two, it increased to 0.69 
(95% CI: 0.60–0.77, p = 0.63). Examples of true and false 
positive labeled regions are shown in the additional files, 
(Additional files Fig. 2).

Discussion
The deep learning model showed high accuracy in assess-
ment of the MD and, thus, in detecting high-risk versus 
low-risk LM resection margins. Interestingly the use 
of AI improved the performance of some pathologists. 
Precise evaluation of residual tumor presence within 
resection margins is crucial in both the assessment and 
subsequent treatment of patients afflicted with LM. The 
utilization of such an automated tool could aid patholo-
gists in the assessment and/or pre-screening of LM 
excisions.

Interestingly, all pathologists showed a trend of 
increased performance when aided by the AI algorithm 

Fig. 2  The receiver operating characteristic curves and corresponding area under these curves for the AI model and the individual 
dermatopathologists and pathology residents

Fig. 3  The receiver operating characteristic curves and corresponding area under these curves for the junior dermatopathologist (left) and one 
of the residents in pathology (right) with and without the aid of AI compared to the AI model (red curve)
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and this was statistically significant for the junior der-
matopathologist and one of the pathology residents.

It is even likely that in a clinical environment the per-
formance of the pathologists might be poorer and that 
they can get additional aid from the AI model. Assess-
ment of multiple resection margins on multiple slides 
becomes a cumbersome task for the pathologist often 
requiring additional staining with IHC in ambiguous 
cases. Our model could potentially provide helpful aid in 
pre-screening the entirety of a scanned WSI, highlighting 
high-risk areas that need more urgent attention or iden-
tifying which slides need additional IHC prior to the case 
being assigned to a pathologist.

Three of the pathologists were trained dermatopatholo-
gists who regularly assess melanocytic lesions in their 
daily practice and are familiar with digital diagnostics. 
This tool may prove to be particularly advantageous in 
settings where specialized and experienced pathologists 
are not readily available, which was supported by the sig-
nificantly improved performance of the junior dermato-
pathologist and one of the pathology residents.

High discordance in assessing the histopathological 
margins may lead to both over- and undertreatment of 
patients with LM [18]. The goal of therapy is to achieve 
complete removal of the LM in order to prevent develop-
ment of invasive disease and surgical excision is therefore 
the treatment of choice to achieve clear histopathologi-
cal margins. Although without statistical significance, the 
pathologists increased their interobserver agreement as a 
group with the aid of AI.

Distinguishing melanocytes from pigmented and non-
pigmented basal keratinocytes and inflammatory cells 
can be challenging on routine H&E slides without the aid 
of IHC [9, 10].

The need for IHC makes interpretation of LM time-
consuming and costly. The AI model was trained on 
annotated H&E slides with the aid of SOX10 staining, 
but the testing was performed solely on H&E slides. A 
notable strength of this study is that both the patholo-
gists and the AI model assessed the same H&E-stained 
WSIs. Employing the AI model in a screening environ-
ment could reduce the need for IHC, reducing costs and 
shortening lead times in the laboratory.

We chose to employ the SOX10 immunostain because 
it’s the reference standard at our department, showing 
nearly 100% sensitivity in detection of melanocytes in the 
epidermis [19].

Previous studies have shown that Melan-A staining can 
lead to an overestimation of melanocyte numbers in sun-
damaged skin [20]. In contrast, SOX10 has proven to be a 
highly specific melanocytic marker that is not expressed 
in keratinocytes or lymphocytes. Another option is using 
PRAME, an emerging marker that has demonstrated 

high sensitivity and specificity for diagnosing LM in 
biopsies and excisions [21].

MD has been used in determining histopathological 
margins and predicting the risk of recurrence. A system-
atic review assessed the MD in LM and chronic sun-dam-
aged skin [22]. In each individual study, mean MD scores 
were higher for LM than for chronic sun-damaged skin. 
However, upon examining the overall study situation, it 
becomes evident that data are highly diverse, and exhibit 
overlaps. Consequently, they came to the conclusion that 
it is not possible to determine a precise reference point. 
Particularly concerning the significance of defining surgi-
cal resection margins, this underscores the necessity for 
additional research to prevent patients from undergo-
ing extensive and potentially disfiguring surgery without 
increasing recurrence risk for LM patients.

Gorman et  al. demonstrated that an MD of > 25 mel-
anocytes/0.5 mm field diameter at the resection margin 
serves as a robust predictor of LM recurrence [8]. They 
utilized both a two and a three-graded recurrence risk 
model (low, intermediate, and high-risk) but despite the 
risk of false negatives, we opted for their dichotomized 
low- and high-risk model for this initial pilot study. This 
division of MD into two risk strata yielded 95% sensitiv-
ity and 99% specificity. In their study, the MD threshold 
was based on H&E staining, whereas in our investiga-
tion, we employed SOX10 staining as the ground truth. 
We acknowledge that this numeric threshold may not 
directly translate to our study, as SOX10 staining has 
been shown to identify more melanocytes compared to 
H&E staining [12]. The exact cutoff value can be subject 
to change; nonetheless, we assert that this study under-
scores the capabilities of the AI model and its potential, 
notwithstanding the possibility of a different MD cut-
off for determining recurrence risk.emerging in future 
investigations.

Deep learning models have shown potential in mela-
noma diagnostics. Kucharski et al. performed patch-level 
segmentation for detection of melanocytic nests and 
nevus cells on histopathological images using autoencod-
ers [23]. Another study used weakly-supervised training 
for identifying melanocytic proliferations on histopathol-
ogy images [24]. Previous studies using AI in the assess-
ment of histopathological resection margins are still rare. 
Previously, a deep learning model was used to assess the 
resection margins in basal cell carcinoma during Mohs 
micrographic surgery showing it to be a feasible option to 
improve the clinical workflow and reduce costs in histo-
pathological analysis which is in line with the findings in 
our study [17].

Even though the AI model showed higher sensitiv-
ity compared to the pathologists, the specificity was 
lower. The algorithm tended to identify hyperchromatic 
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keratinocytic nuclei with a surrounding halo as melano-
cytes contributing to this. Another factor that can cause 
problems for the observer and the algorithm is the pres-
ence of obscuring melanin pigmentation which can be 
abundantly present in keratinocytes on sun damaged 
skin). We believe that a larger sample size could further 
improve the performance of the model in the future. Fur-
thermore, the model could be further adjusted as less 
sensitive and more specific. However, in this study the 
current model with high sensitivity was shown to aid the 
pathologists and improve their performance. The anno-
tation process could also be further optimized if serial 
sectioned WSI with more extensive IHC were employed 
in the training set. The material was retrospectively col-
lected from the archives, and additional staining was only 
performed on the test set due to economic constraints. 
Using overlayed “virtual slides” of H&E and SOX10 could 
also help the annotating dermatopathologist to more pre-
cisely annotate each single melanocyte [25]. A further 
improvement to decrease the workload would have been 
to generate the annotations AI-assisted with help of IHC 
[26].

The reference standard was based on one pathologist’s 
interpretation of IHC and H&E slides. A consensus of 
several pathologist interpretations could have made the 
reference standard more reliable. This could overcome 
some of the issues we observed with false positivity which 
could have been a consequence of background being mis-
taken for a melanocyte. Another drawback lies in the use 
of slides from a single pathology department and using a 
single scanning device limiting external validity. Overall, 
identifying and annotating melanocytic proliferations in 
WSI poses significant challenges due to the varied sizes 
and shapes of melanocytic nests, the small size of some 
melanocytes and the pleomorphism of others showing 
great heterogeneity and sometimes a much larger nucleus 
and abundant cytoplasm [27]. Furthermore, a typical LM 
WSI may contain from a few to several hundreds of nests 
and several hundreds to thousands of single melanocytes, 
depending on the case, which resulted in highly labor-
intensive annotation processes. Annotating requires the 
expertise of an experienced dermatopathologist, ren-
dering the collection of an adequate dataset for model 
training both time-consuming and costly. These obsta-
cles collectively hinder the creation of large, high-quality 
datasets suitable for training deep learning algorithms. 
As a future consideration it would be interesting to apply 
weakly or unsupervised learning methods for assessment 
of the resection margins.

AI technology may contribute to standardizing out-
come predictions and minimizing interobserver vari-
ability. Moreover, the consistent performance of the AI 
model across all times of the day eliminates the impact of 

fatigue on diagnostic accuracy. However, prior to imple-
mentation in real-life scenarios, further validation in 
larger datasets and across materials from various labora-
tories scanned with different scanners and stained with 
different H&E-staining protocols is essential.

Conclusions
To conclude, the deep learning AI model showed der-
matopathologist-level accuracy in the detection of high-
risk LM resection margins on routine H&E-stained 
slides. The use of such a tool could possibly reduce the 
need for IHC and assist pathologists in their assessment 
of LM margins.
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