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Abstract
Objective To investigate the genetic mutations in patients with papillary thyroid carcinoma (PTC) and their 
clinicopathological features by next generation sequencing (NGS).

Methods NGS technology was used to detect genetic mutations in PTC patients, and clinicopathological features 
were collected.

Results ①Among 855 PTC patients, 810 patients had genetic mutations, and 45 patients had no genetic mutation. 
②BRAF mutation was associated with tumor diameter (P < 0.001) and histological subtypes (P = 0.002). The abundance 
of V600E mutation was associated with gender (P = 0.004), tumor diameter (P < 0.001), bilateral presentation (P = 0.001), 
extrathyroidal extension (P < 0.001), lymphatic metastasis (P < 0.001), histological subtypes (P = 0.002) and TNM 
staging (P = 0.000); The different mutation abundance of V600E was associated with tumor diameter (P < 0.001), 
multifocal presentation (P = 0.047), bilateral presentation (P = 0.001), extrathyroidal extension (P = 0.001), lymphatic 
metastasis (P < 0.001), histological subtypes (P = 0.022) and TNM staging (P = 0.000). ③RET fusion was associated 
with tumor diameter (P < 0.001) and lymphatic metastasis (P = 0.005). ④TERT mutation was associated with gender 
(P = 0.043), tumor diameter (P < 0.001), extrathyroidal extension (P = 0.028) and TNM staging (P = 0.017). ⑤RAS mutation 
was associated with histological subtypes (P < 0.001). ⑥NTRK and PIK3CA mutations were not associated with 
clinicopathological features.

Conclusion NGS technology can comprehensively analyze the genetic mutations in PTC patients, which provides 
important prompts for the occurrence, development, diagnosis and treatment of PTC. In addition, BRAF V600E 
mutation, RET fusion and TERT mutation are associated with a number of high-risk clinicopathological features. 
Detection of genetic mutations in PTC patients by NGS is of great significance.
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Introduction
Papillary thyroid carcinoma (PTC) is the most com-
mon malignant tumor of the endocrine system. In recent 
decades, the incidence rate of PTC has risen rapidly 
worldwide, and is expected to become the fourth malig-
nant tumor in the incidence rate within 10 years [1–3]. 
According to histological subtypes, thyroid cancer can 
be divided into PTC, medullary thyroid cancer, follicular 
thyroid cancer, and undifferentiated thyroid cancer, with 
PTC being the most common, accounting for approxi-
mately 80–85% [4, 5]. The occurrence of thyroid cancer is 
closely related to factors such as activation of oncogenes, 
inactivation of tumor suppressor genes, excessive iodine 
intake, estrogen, ionizing radiation, and obesity, but the 
specific mechanisms have not been elucidated [6, 7].

Next Generation Sequencing (NGS) technology has the 
characteristics of high throughput, high depth and high 
sensitivity, and has been widely used in the research of 
neoplastic diseases [8, 9]. In this study, NGS technology 
was used to clarify the genetic mutations in PTC patients, 
and to explore the relationship between key genes and 
clinicopathological features of PTC.

Materials and methods
Clinical data selection
PTC patients in Fujian Medical University Union Hospi-
tal from January 2021 to September 2022 were selected. 
A total of 855 patients were confirmed to have PTC by 
pathology, and surgical resection samples and clinico-
pathological features were collected. Among the 855 
patients, there were 189 males and 666 females; Age 
range from 7 to 83 years old, with 665 cases ≤ 55 years 
old and 190 cases > 55 years old; The diameter of the 
tumor ranges from 0.1 to 5.0 cm, with 620 cases ≤ 1  cm 
and 235 cases > 1 cm; 557 patients had single lesion, while 
298 patients had multiple lesions; 716 patients were on 
the single side, and 139 patients were on both sides; 204 
patients had absent or incomplete capsule, while while 
651 patients had complete of the capsule;401 patients had 
extrathyroidal extension, while 454 patients had no extra-
thyroidal extension; 478 patients had lymphatic metas-
tasis, and 377 patients had no lymphatic metastasis; 676 
patients had classical subtype, 120 patients had follicular 

subtype, and 59 patients had both classical subtype and 
follicular subtype; There were 728 patients with TNM 
stage I, 110 with stage II, and 7 with stage III. The dif-
ferent histological subtypes of PTC patients are shown in 
Fig. 1.

NGS sequencing
For paraffin-embedded samples, a nucleic acid extrac-
tion kit (DKJ28-01, Guangzhou Meiji Biotechnology Co., 
Ltd.) was utilized for extraction. The concentration was 
detected by employing the gene sequencing universal 
library kit (dsDNA quantification) (230228C03Z, Xia-
men Aide Biological Company) and the Quantus fluo-
rescence photometer (E6150, Peomega Company, USA). 
The human tumor multi-gene mutation detection kit 
(reversible end termination sequencing) (220701C01Z, 
Xiamen Aide Biological Company) was used to con-
struct a library. DNA fragmentation was accomplished 
through enzyme digestion, followed by end repair, splic-
ing, and PCR amplification to obtain an amplified library. 
The amplified library was subjected to liquid-phase 
hybridization with probes, capture enrichment via the 
magnetic bead method, and PCR amplification to yield 
the captured library. Quality control of pre-library and 
captured library fragments was conducted using the 
2100 Bioanalyzer System (Agilent Technologies, Ger-
many). Sequencing was performed using the Illumina 
MiseqDx sequencer (Illumina, USA). After filtering the 
raw sequencing data, the Aide Bioinformatics Analysis 
System was adopted for bioinformatics analysis. Using 
GRCh37/hg19 as the reference sequence, analyze and 
detect all hot exon regions and some introns of human 
AKT1, ALK, BRAF, CTNNB1, EGFR, EIF1AX, FGFR1, 
FGFR2, FGFR3, FGFR4, GNAS, HRAS, KDR, KIT, KRAS, 
MET, NRAS, NTRK1, NTRK2, NTRK3, PAX8, PDG-
FRA, PIK3CA, PTEN, RASAL1, RET, TERT, TP53, TSC2, 
TSHR; The types of genetic mutations detected include 
point mutation, insertion deletion variation, fusion, copy 
number variation, etc.

Genetic mutations with an abundance of 1% or more 
were considered positive. For hot spot mutation below 
1%, PCR validation was required. The primer sequence 
for BRAF V600E mutation and internal reference are 

Fig. 1 (1-1: classical subtype; 1-2: follicular subtype; 1-3: classical and follicular subtype)
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shown in Table  1. The methodology of PCR technology 
is as follows. After nucleic acid extraction, DNA was 
obtained from tissue samples. A PCR reaction system 
was established according to the kit instructions. Then 
PCR amplification is performed on a fluorescence quan-
titative PCR instrument. Finally, the results were inter-
preted to complete the validation.

Bioinformatics analysis
The following analysis should be carried out for the 
detection data: ①Data quality control: Perform qual-
ity control on the data obtained through sequencing to 
eliminate low-quality sequences and possible contami-
nated data. ②Data alignment: Align the sequencing data 
with the reference genome to determine the position 
of each sequencing fragment on the genome. ③Sorting 
and deduplication: After comparison, sort the sequence 
and remove duplicate sequences to enhance the accu-
racy of subsequent analysis. ④Obtaining BAM file: After 
the above steps, a BAM file was generated, which con-
tains the information of sequencing data and reference 
genome alignment. ⑤Annotation and filtering: Annotate 
the test results to determine gene, location and other 
information, and filter to remove false positive results to 
obtain the results.

This study only detected somatic variants of tumors 
and did not conduct germline gene detection using 
peripheral blood. The variants information obtained after 
sequencing were compared with public databases such as 
1000 Genomes (http:// www.int ernatio nalg enome.org/), 
ClinVar (https:/ /www.nc bi.nlm. nih. gov/clinvar/),  C O S 
M I C (http://cancer.sanger.ac.uk) to rule out the  p o s s i b i l 
i t y of germline mutation. Simultaneously, the Aide Bio-
informatics Analysis System we utilize contains a white 
blood cell database which can assist us in screening for 
SNP loci, benign SNP loci can be removed.

Variation classification
Referring to the “Standards and Guidelines for the Inter-
pretation and Reporting of Sequence Variants in Can-
cer” by the Association for Molecular Pathology (AMP), 
American Society of Clinical Oncology (ASCO), College 
of American Pathologists (CAP), by integrating the rel-
evant research evidence of variants in treatment, diagno-
sis, and prognosis, the variants were divided into: Tier I 

(variants with strong clinical significance), Tier II (vari-
ants with potential clinical significance), Tier III (variants 
with unknown clinical significance), and Tier IV (variants 
deemed benign or likely benign). In this study, variants of 
Tier I and Tier II were included [10].

Statistical analysis
The experimental data was analyzed by SPSS 26.0 sta-
tistical software. The chi-square test was employed to 
compare the counting data. Specifically, when the total 
sample size n ≥ 40 and the theoretical frequencies of all 
cells n ≥ 5, the Pearson chi-square test was utilized; In 
cases where n ≥ 40 but some theoretical frequencies n<5, 
a continuity correction test was applied. For sample sizes 
n<40 or theoretical frequencies n<1, Fisher’s exact prob-
ability method should be used. Comparison of measure-
ment data was conducted using a T-test with statistical 
significance defined as P < 0.05.

Results
Among the 855 PTC patients, 810 patients were found to 
have genetic mutations, while 45 patients were found to 
have no genetic mutation. Among the 810 patients with 
genetic mutations, 775 patients had single genetic muta-
tion, while 35 had two genetic mutations. The highest 
mutation rate was for the BRAF (n = 743), with a muta-
tion rate of 86.90%. The other genes in order of muta-
tion rate were RET (n = 43), KRAS (n = 10), TERT (n = 9), 
NTRK3 (n = 8), NRAS (n = 7), TP53 (n = 5), PIK3CA 
(n = 7), NTRK1 (n = 4) and ALK (n = 2) etc. The detail of 
genetic mutations are shown in Table 2.

BRAF
Among the 743 BRAF mutation, there were 732 cases of 
V600E mutation, 1 case of V600-K601delinsE mutation, 
1 case of V601E mutation, and 9 fusion (with IGF2BP2, 
OSBPL9, WARS1, MKRN1, KATNA1, MBP, B1CD2, 
MBNL2, TRIM24, respectively). In addition, 33 cases of 
V600E mutation patients had co-mutation with other 
genes, including AKT1, EGFR, E1FIAX, KRAS, NRAS, 
HRAS, NTRK1, TP53, PIK3CA, TERT and FGFR3 
(Table 2). We divided 855 cases of PTC patients into the 
BRAF mutation group (n = 743) and the BRAF wild-type 
group (n = 112), and then compared the clinicopatho-
logical features in the two groups. The results showed 

Table 1 Primer sequence of PCR
Gene Primer sequence
BRAF V600E Forward 5’- T C T G T A G C A G C C C T C A G T A G C G A A G C A G T G A T T T T G G T C T A G C T A C A G A-3’

Reverse 5’- A G C C C T C A G T A G C G A A G C A A C T C A G C A G C A T C T C A G G − 3’
Probe 5’- T T C A A A C C A T C A G T T T G A A C A G T T G T C T G G A T C A A C T G-3’

Internal Reference Forward 5’- G T A C C T G C A A G G T G T G G A G T T A C-3’
Reverse 5’- G C C A T C C T G A A T T C T G T A A A C A G C-3’
Probe 5’- A G A C C T C T C A T C A T C A G T G C-3’

http://www.internationalgenome.org/
https://www.ncbi.nlm.nih.gov/clinvar/
http://cancer.sanger.ac.uk
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that the BRAF mutation was only associated with tumor 
diameter (P < 0.001) and histological subtypes (P = 0.002) 
(Table 3). Furthermore, we divided PTC patients into the 
V600E mutation group and the V600E wild-type group, 
the result was consistent with above.

To further investigate the relationship between the 
abundance of V600E mutation and clinicopathologi-
cal features, V600E mutation patients were divided into 
different groups according to their clinicopathologi-
cal features. The results showed that the abundance of 
V600E mutation was related to gender(P = 0.004), tumor 
diameter(P < 0.001), bilateral presentation(P = 0.001), 
extrathyroidal extension (P < 0.001), lymphatic 
metastasis(P < 0.001), histological subtypes(P = 0.002), 
and TNM staging (P = 0.000) (Fig. 2).

In 732 patients with V600E mutation, the mutation 
abundance ranged from 0.09 to 38.93%, and 26 cases 
of PTC patients with mutation abundance below 1% 
were verified by PCR. According to the 20% mutation 
abundance as the limit, 732 patients were divided into 
low mutation abundance group (abundance ≤ 20%) and 
high mutation abundance group (abundance > 20%), 
and the differences of clinicopathological features in 
each group were compared. The results showed that 

the different abundance of V600E mutation was cor-
related with the tumor diameter(P < 0.001), multifocal 
presentation(P = 0.047), bilateral presentation(P = 0.001), 
extrathyroidal extension (P = 0.001), lymphatic 
metastasis(P < 0.001), histological subtypes(P = 0.022), 
TNM staging (P = 0.000).

RET
Among the 855 cases, 43 cases of RET fusion were 
detected, with a mutation rate of 5.03%. Among them, 
there were 23 cases of CCDC6-RET fusion, 12 cases of 
NCOA4-RET fusion, 4 cases of ERC1-RET fusion, 2 cases 
of GOLGA5-RET fusion, 1 case of AFAP1L2-RET fusion, 
and 1 case of ANKRD26-RET fusion. The clinicopatho-
logical features of 43 patients with RET fusion are shown 
in Table 3.

The PTC patients were divided into RET fusion group 
(n = 43) and RET wild-type group (n = 812). The differ-
ences of clinicopathological features between the two 
groups were compared. The results showed that RET 
fusion was associated with tumor diameter (P < 0.001) 
and lymphatic metastasis (P = 0.005) (Table  3). PTC 
patients were also divided into CCDC6-RET fusion group 
(n = 23) and non CCDC6-RET fusion group (n = 832). The 

Table 2 Genetic mutations in PTC
Genetic mutations Total(n) Mutation/Fusion (n)
BRAF 710 V600E (699), V601E (1), V600_K601delinsE (1), IGF2BP2-BRAF (1)Δ, OSBPL9-BRAF 

(1)Δ, WARS1-BRAF (1)Δ, MKRN1-BRAF (1)Δ, KATNA1-BRAF (1)Δ, MBP-BRAF (1)Δ, 
B1CD2-BRAF (1)Δ, MBNL2-BRAF (1)Δ, TRIM24-BRAF(1)Δ

RET 41 CCDC6-RET (22), NCOA4-RET (11), ERC1-RET (4), GOLGA5-RET (2)Δ, ANKRD26-
RET (1)Δ, AFAP1L2-RET (1)Δ

KRAS 9 Q61K (8), G12V (1)
NTRK3 8 ETV6-NTRK3 (8)
NTRK1 3 TPM3-NTRK1 (1), BPNT1-NTRK1 (1)Δ, TFG-NTRK1 (1)Δ

ALK 2 EML4-ALK (1), STRN-ALK (1)Δ

TP53 1 R248W (1)
NRAS 1 Q61R (1)
BRAF + TERT* 9 V600E + C228T (7), V600E + C250T (2)
BRAF + NRAS 6 V600E + Q61R (6)
BRAF + PIK3CA 6 V600E + E545A(1), V600E + H1047R(2), V600E + E545K(1), V600E + N1044K(1)Δ, 

V600E + M1043I(1)Δ

BRAF + TP53 4 V600E + R273H (1), V600E + W146R (1)Δ,V600E + M246V (1)Δ, V600E + C176F (1)Δ

BRAF + AKT1 1 V600E + E17K (1)
BRAF + EGFR 1 V600E + M137R (1)Δ

BRAF + EIF1AX 1 V600E + K10E (1)Δ

BRAF + FGFR3 1 V600E + CNV (1)
BRAF + HRAS 1 V600E + Q61R (1)
BRAF + KRAS 1 V600E + G12V (1)
BRAF + NTRK1 1 V600E + G517E (1)Δ

BRAF + PTEN 1 V600E + R335 (1)
RET + EGFR 1 CCDC6-RET + CNV (1)
RET + PIK3CA 1 NCOA4-RET + V344M (1)Δ

*This means that 9 patients have co-mutations of the BRAF and TERT. Specifically, there are 7 patients with BRAF (V600E) and TERT (C228T), and 2 patients with BRAF 
(V600E) and TERT (C250T)
ΔThis means that genetic mutations are relatively infrequent in PTC
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results showed that CCDC6-RET fusion was only associ-
ated with the tumor diameter (P < 0.001) and lymphatic 
metastasis (P = 0.029). PTC patients were also divided 
into the NCOA4-RET fusion group (n = 12) and the non 
NCOA4-RET fusion group (n = 843). The results show 
that RET-NCOA4 fusion was only associated with the 
tumor diameter (P = 0.001).

According to the 20% mutation abundance threshold, 
the RET fusion patients were divided into low mutation 
abundance group (n = 31) and high mutation abundance 
group (n = 12). Comparing the clinicopathological fea-
tures of different mutation abundance of RET afterward, 
it was found that different mutation abundance of RET 
was related to tumor capsule(P = 0.044).

TERT
Among the 855 PTC patients, 9 cases of TERT muta-
tion were detected, with a mutation rate of 1.05%, and 
all these 9 patients had BRAF V600E co-mutation. In 
which,7 had the C228T mutation, and 2 had the C250T 
mutation. The clinicopathological features of TERT 
patients are shown in Table 3.

Comparing the clinicopathological features of the 
TERT mutation group (n = 9) with TERT wild-type 
group (n = 846), the results showed that TERT mutation 
was associated with gender (P = 0.043), tumor diameter 
(P < 0.001), extrathyroidal extension (P = 0.028), and TNM 
staging (P = 0.017) (Table 3).

RAS/NTRK/PIK3CA
Among the 855 PTC patients, 18 cases of RAS mutation 
were detected, with a mutation rate of 2.11%. Among the 
RAS mutation patients, 10 had KRAS mutation, 7 had 
NRAS mutation, and 1 had HRAS mutation. 12 cases 
of NTRK fusion were detected, with a mutation rate of 
1.40%. Among the NTRK fusion patients, 4 had NTRK1 
fusion, and 8 had NTRK3 fusion. 7 cases of PIK3CA 
mutation was detected, with a mutation rate of 0.82%. 
The clinicopathological features of RAS/NTRK/PIK3CA 
are shown in Table 3.

After comparing the clinicopathological features of the 
RAS mutation group (n = 18) with RAS wild-type group 
(n = 837), we found that RAS mutation was only related 
to histological subtypes (P < 0.001). The same method-
ology was applied to the comparison of NTRK/PIK3CA 
and clinicopathological features, and the results showed 
that NTRK/PIK3CA mutations were not associated with 
clinicopathological features of PTC patients.

Discussion
NGS has high throughput, high depth, and high sensi-
tivity, and it has been widely used in basic and clinical 
research. Compared with PCR technology and first-gen-
eration sequencing technology, NGS can not only detect 
common mutations, but also detect rare mutations, 
which is of great significance [8, 9, 11]. Apart from the 
commonly observed mutations in PTC, in this study, we 
have also detected some rare mutations, including fusion 

Fig. 2 Relationship between the abundance of V600E mutation and the clinicopathological features of PTC
2-1 Gender; 2-2 Age; 2-3 Tumor diameter(cm); 2-4 Multifocal presentation; 2-5 Bilateral presentation; 2-6 Tumor capsule; 2-7 Extrathyroidal extension; 
2-8 Lymphatic metastasis; 2-9 Histological subtypes; 2-10 TNM staging
Comparison between groups, *: P < 0.05
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and point mutation. The detailed information regarding 
these rare mutations can be found in Table  2. Applying 
NGS to the detection of tumor diseases provides impor-
tant hints and guidance for the occurrence and develop-
ment of tumor diagnosis and treatment [8, 12]. In this 
study the most common mutations were found in the 
BRAF, RET, TERT and RAS. The BRAF, RET and RAS 
are involved in the mitogen-activated protein kinase 
(MAPK) signaling pathway, which is the most common 
carcinogenic mechanism in PTC. The BRAF, RET, and 
RAS genes usually do not co-mutation, but in our experi-
mental results, we found 6 cases of BRAF with NRAS co-
mutation, 1 case of BRAF with KRAS co-mutation, and 
1 case of BRAF with HRAS co-mutation. In addition, we 
detected EGFR, TP53, PIK3CA, TERT, E1FIAX1, FGFR3, 
AKT1, E1F1AX, and NTRK1 co-mutation with BRAF, 
these mutations are difficult to be detected by PCR meth-
odology or first-generation sequencing technology.

BRAF was discovered by Ikawa S et al. [13] in neuro-
blastoma in 1988, and it is located on human chromo-
some 7 (7q34), encoding a RAF family serine/threonine 
protein kinase. BRAF plays a role in regulating the MAPK 
signaling pathway, promoting continuous cell division, 
proliferation, and tumor formation [14, 15]. The relation-
ship between BRAF and the clinicopathological features 
of PTC patients has not been clearly established, and dif-
ferent research results vary [16–21]. In this study, BRAF 
mutation was only related to tumor diameter and histo-
logical subtypes. Further studies have revealed that the 
abundance of V600E mutation was associated with gen-
der, tumor diameter, bilateral presentation, extrathyroidal 
extension, lymphatic metastasis, histological subtypes 
and TNM staging. Numerous studies had confirmed that 

BRAF mutation was linked to high-risk clinicopathologi-
cal features such as lymphatic metastasis, age and extra-
thyroidal extension (Table 4) [18, 21]. It can be seen that 
BRAF mutation is an important independent prognostic 
factor for PTC.

RET is located on chromosome 10q11.2 of human and 
was identified as an oncogene through the transfection 
of human lymphoma DNA into mouse NIH3T3 cells 
[22]. RET gene encodes the RET protein, which can acti-
vate signaling pathways such as RAS, STAT, and PI3K, 
thereby participating in the proliferation, invasion, and 
migration of tumor cells [23]. RET fusion account for 
only 6% of RET variation, but is related to the occur-
rence, development, and biological behaviors of tumor 
such as invasion and migration [24]. In this study, RET 
fusion was detected in 43 patients. The common fusion 
types among patients with PTC are CCDC6-RET and 
NCOA4-RET, which is in line with the current consen-
sus as described in references [25, 26]. Presently, there 
is inconsistency in research findings regarding the cor-
relation between RET and clinicopathological features 
of PTC patients [27–29]. Our investigation revealed an 
association between RET fusion and tumor diameter as 
well as lymphatic metastasis, while no significant link 
existed with other clinicopathological features. Current 
studies hold that RET fusion is related to factors such as 
gender, TSH level, lymphatic metastasis, immune micro-
environment, progressive histopathological features, later 
T stages, and patients with RET fusion are more likely to 
experience recurrence [27–29] (Table 4).

TERT is the catalytic protein subunit of telomerase. 
The abnormal activation of TERT in telomeres is of great 
significance to the biological behavior of tumor cells, 

Table 4 Relationship between BRAF/RET/TERT genes and clinicopathological characteristics of PTC patients in different studies
Gene Study Sample 

Size(n)
Related clinicopathological features

BRAF This study 855 tumor diameter, histological subtypes
Li C et al. [16] 6372 lymphatic metastasis, TNM staging, extrathyroidal extension, tumor diameter, male, multifocal 

presentation, tumor capsule, classic of PTC, and tall-cell variant of PTC
Chung JH et al. [17] 8315 extrathyroidal extension, lymphatic metastasis, TNM staging
Wei X et al. [18] 9908 age, male, multifocal presentation, lymphatic metastasis, extrathyroidal extension, TNM staging
Xing M et al. [19] 219 extrathyroidal extension, lymphatic metastasis, TNM staging
Scheffel RS et al. [20] 134 This paper is based on single center data, and they did not identify any meaningful pathologi-

cal parameters
Xing M et al. [21] 507 male, tumor diameter, extrathyroidal extension, lymphatic metastasis, TNM staging

RET This study 855 tumor diameter, lymphatic metastasis
Khan et al. [27] 48 gender, TSH level, lymphatic metastasis
Huang et al. [28] 108 lymphatic metastasis, the immune microenvironment
Scholfield et al. [29] 41 aggressive histopathological features, later T stages

TERT This study 855 gender, tumor diameter, extrathyroidal extension, TNM staging
Liu’s et al. [33] 408 age, tumor diameter, extrathyroidal extension, PTC advanced stages III/IV
Zhao L et al. [34] 8338 lymphatic metastasis, extrathyroidal extension, PTC advanced stages III/IV
Sang Y et al. [35] 382 age, extrathyroidal extension, lymphatic metastasis, PTC advanced stages III/IV
Li M et al. [36] 143 age, PTC advanced stages III/IV
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such as proliferation, invasion and migration [30]. The 
most common mutations are C228T and C250T. The 
mutation of these two sites will produce a new set site 
E-26 transcription factor, thus promoting the transcrip-
tional activity of telomerase [31]. The results of this study 
showed that TERT mutation was related to gender, tumor 
diameter, extrathyroidal extension and TNM stating. 
Current research indicates that TERT mutation is related 
to the occurrence of PTC, along with features like age, 
tumor diameter, extrathyroidal extension, and advanced 
stages III/IV in PTC patients [32, 33]. Co-mutation of 
TERT and BRAF are more common and have a stronger 
connection with clinicopathological aggressiveness. The 
present study also agrees that TERT mutation is an inde-
pendent factor for a poor prognosis of PTC [17, 21, 34–
36] (Table 4). This suggests that TERT detection should 
be included in the pathological assessment of PTC.

RAS was first discovered in thyroid tumors by Lem-
oine et al. [37] in 1988, and it is an oncogene that par-
ticipates in the formation and development of various 
tumors. Point mutation or insertion mutation in the 
coding region of the RAS can activate the gene, and the 
activated RAS can increase the expression of its prod-
uct, P21 protein. P21 protein participates in regulating 
cell growth and differentiation, it also can promote the 
abnormal proliferation of normal cells and ultimately 
transform them into tumor cells [38, 39]. RAS mutation 
was detected in 18 patients with PTC, with a mutation 
rate of 2.11%. The results showed that RAS mutation was 
related to the histological subtypes and was unrelated to 
other clinicopathological features. KRAS, NRAS, HRAS 
are common in PTC, especially in the follicular subtype, 
but lack significant and independent prognostic effects 
[40]. Additionally, we statistically analyzed the NTRK and 
PIK3CA, and found no correlation between the genetic 
mutations and the clinicopathological features of PTC 
patients.

The NGS test report includes the genetic “mutation 
abundance” indicator, but previous studies have not 
clarified the meaning of this indicator [41, 42]. In this 
study, BRAF V600E and RET patients were divided into 
low mutation abundance and high mutation abundance 
groups based on a threshold of 20%. The results showed 
that different V600E mutation abundance was associated 
with tumor diameter, multifocal presentation, bilateral 
presentation, extrathyroidal extension, lymphatic metas-
tasis, histological subtypes and TNM staging. Different 
RET mutation abundance was associated with tumor 
capsule, but not associated with other clinicopathological 
features. The relationship between mutation abundance 
and clinicopathological features has not been reported in 
previous studies, and the experimental results obtained 
by NGS testing PTC patients’ genetic mutations have 
higher clinical reference value. In future studies, we can 

combine mutation abundance with patient prognosis 
information to establish a prognostic model and obtain 
the mutation abundance threshold. This could potentially 
be an independent prognostic factor.

However, this study has certain limitations. We only 
included 30 genes associated with PTC in our research, 
rather than performing whole exome sequencing. This 
may lead to the failure to detect some rare genes. In the 
future, whole exome sequencing should be conducted on 
PTC patients, and the sequencing results need to be com-
bined with clinicopathological features and prognosis 
information to gain a more comprehensive understand-
ing of the genetic mutations status of PTC. Furthermore, 
the histological subtypes included in our study are mainly 
classical subtype, follicular subtype, and a mixture of 
classical subtype and follicular subtype. Among the 855 
patients, one patient was of tall-cell subtype (combined 
with classical subtype, and BRAF V600E mutation was 
detected), and one patient was of cribriform morular 
subtype (combined with classical subtype, and BRAF 
V600E mutation was detected). Due to the small num-
ber of cases and the presence of classical subtype in both, 
we classified them as classical subtype for analysis. In the 
future, large-scale research is needed to incorporate sub-
type such as tall-cell subtype, diffuse sclerosing subtype, 
and columnar-cell subtype into the study in order to fur-
ther analyze and grasp the relationship between genetic 
mutations and histological subtypes in patients with 
PTC.

Conclusion
NGS technology can comprehensively analyze the genetic 
mutations of PTC patients, which provides important 
hints for the occurrence, development, diagnosis and 
treatment of PTC. In addition, BRAF V600E mutation, 
RET fusion, TERT mutation are associated with a num-
ber of high-risk clinicopathological features. Detection 
of genetic mutations in PTC patients by NGS is of great 
significance.
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