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Abstract
Biomarkers for discrimination among different subgroups of idiopathic inflammatory myopathies (IIM) are difficult 
to identify and may involve multiple laboratory tests and time-consuming procedures. We assessed the potential 
for artificial intelligence (AI) to extract features such as density of endomysial microvessels based on automatic 
analysis of the CD31+ vascular network on muscle biopsy images. We also assessed the potential of this technique 
to save time and its agreement rate with analyses based on the manual selection of microvessels from the same 
images. A total of 84 images from 84 patients with IIM, diagnosed between 2014 and 2020, were retrieved and 
analyzed using the Fast Random Forest (FRF) technique. We built a lightweight and explainable algorithm for 
calculating the pixel percentage of CD31+ endomysial capillaries. The FRF technique applied on images of CD31-
stained muscle sections achieved a good performance in the recognition of microvessels by estimating their 
density over a standard area corresponding to a sample of microscope image. The time spent for this analysis was 
90% less than the manual choice of microvessels (estimated time considering the computational time and the time 
spent to manually detecting the microvessels features). The good performance of the FRF demonstrates that the 
CD31 pixel percentage of endomysial capillaries is sufficient for a correct estimation. Finally, the paper proposes a 
procedure to integrate AI in the pre-screening process.
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Introduction
Idiopathic inflammatory myopathies (IIM) are a hetero-
geneous group of autoimmune muscle diseases charac-
terized by progressive muscle weakness, extracellular 
release of creatine kinase as a sign of sarcolemmal dis-
integration after exercise, chronic endomysial inflam-
mation and vascular network alterations. IIM can be 
classified into several subgroups: dermatomyositis (DM; 
including amyopathic dermatomyositis), antisynthetase 
syndrome (ASS), immune-mediated necrotizing myopa-
thy (IMNM), sporadic inclusion body myositis (sIBM), 
polymyositis (PM) and overlap myositis (OM) on the 
basis of clinical, serological features (including the pres-
ence/absence of different myositis-specific auto-anti-
bodies), and the specific histopathology [1]. A systematic 
assessment of the vascular network in different IIMs by 
IHC staining with the endothelial marker CD31 revealed 
a prominent endomysial capillary density (CD) in anti-
HMGCR+ IMNM, whereas a reduced CD was calculated 
in PM, ASS, and OM [2].

Confirming the increased capillary density in anti-
HMGCR+ IMNM patients using automated calculation 
methods can be useful for discriminating IMNM from 
PM patients, that both have similar clinical and labora-
tory parameters but a significantly different CD [2]. The 
easy, rapid recognition of changes in the endomysial 
vascular network could serve not only as a useful bio-
marker to better classify IIM patients into more specific 
groups, but also have beneficial implications on diagno-
sis, prognosis, and treatment [3]. In addition, advanced 
imaging techniques and artificial intelligence (AI) can 
help in identifying specific regions of modified vascular 
networks, where the molecular pathways involved can 
be investigated, leading to a better understanding of the 
specific pathogenesis and the identification of potential 
therapeutic targets [4].

Traditional methods of image acquisition and analy-
sis based on manual choice of microvessels as multiple 
regions of interest can be time-consuming procedures. 
However, recent advances in acquisition technology and 
the development of efficient algorithms for image analy-
ses are continually reducing the time required for these 
procedures [5]. Considering the recent surge in the use 
of AI to support clinical and diagnostic procedures [6], 
automatic image analysis techniques can discover spe-
cific image features during the training process of the 
deep learning method, allowing the saving of time as 
compared to traditional methods. In the present paper, 
to enhance the image analysis speed in quantitative imag-
ing, we have employed a possible advanced technique 
to extract image features, namely the Fast Random For-
est (FRF). The FRF technique is a re-implementation 
of the Random Forest classifier (RF) operating in the 
Weka framework and features a good performance in 

computational cost and memory allocation. The FRF 
was initially applied in industrial applications involv-
ing image processing [7] and, successively, in medical 
imaging to detect, among other features, anomalous cell 
aspects in Malignant Melanoma [8] and in screening for 
Naevoid Melanoma in dermatopathology [9], to segment 
3D images [10] and to model object shapes [11]. Specifi-
cally, in the proposed work, the FRF algorithm is adopted 
to identify microvessels in the whole slide images (WSI) 
of immunolabeled muscle sections. The algorithm classi-
fies clusters of pixels embedding the shape of the CD31+ 
vessels, providing output as the probabilistic map indi-
cating the probability of identifying these shapes into a 
specified image region [12]. Furthermore, as the FRF a 
supervised algorithm, it allows the creation of a classifier 
model (named training model) detecting the same classes 
(features) in other new testing images [13]. The possibil-
ity of selecting the images for the classifier allows opti-
mization of the targeting of the features to be extracted, 
avoiding redundancies and wrong information about 
images containing artefacts [14, 15]. Indeed, the FRF also 
allows effective segmentation under challenging acqui-
sition conditions, such as the presence of artefacts. The 
FRF technique has been successfully used to calculate the 
CD31+ endomysial pixel percentage in muscle biopsies 
obtained from a single center cohort of IIM patients.

Materials and methods
Muscle tissue
The muscle sections for CD31 immunostaining derived 
from single open biopsies of muscle tissue obtained for 
diagnostic purposes from 84 patients with clinically and 
pathologically confirmed IIMs already described in a pre-
vious published paper [2]. The analysis was performed 
prior to start any treatment on muscle biopsies from 8 
patients with anti-HMGCR+ IMNM (2 patients exposed 
and 6 patients not exposed to statins), 5 patients with 
anti-SRP+ IMNM, 8 patients with seronegative IMNM 
(no MSA nor myositis-associated autoantibodies). 
Additional muscle samples were taken from 21 patients 
with adult DM, 8 patients with PM, 8 patients with sys-
temic sclerosis-OM (SSc-OM), 8 patients with ASS (6 
Jo1+ and 2 PL7+), 5 patients with PM with mitochon-
drial pathology (PM-Mito), 3 patients with adult mito-
chondrial myopathy (MM), 10 patients with sIBM, and 
6 age-matched healthy subjects, used as controls. The 
6 normal control specimens were derived from appar-
ently healthy subjects with mildly elevated serum levels 
of CK but without any histological abnormality, includ-
ing the absence of inflammatory infiltrates or MHC class 
I up-regulation. The specific clinical-pathological diagno-
ses of IMNM, DM, PM, OM, sIBM, PM-Mito, and ASS 
myositis were made according to the defined published 
criteria [16–20]. All procedures performed in this study 
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were in accordance with the ethical standards of the 1964 
Helsinki Declaration and its later amendments. The study 
was reviewed and approved by the Medical Ethics Com-
mittee of the Regional Policlinico University Hospital 
of Bari (study n. 6229, approval n. 84762, 2020/11/06; 
comitatoetico@policlinico.ba.it). All patients gave signed 
informed consent to the diagnostic and research analy-
ses and specimen inclusion in a muscle biobank. The 
acquired images were obtained with an Olympus Vanox-
T light microscope (Olympus, Hamburg, Germany) 
equipped with a high-resolution video camera (SPOT 
Insight; Diagnostic Instruments, MI, USA) and the 
whole-slide morphometric analysis scanning platform 
Aperio Scanscope CS (Leica Biosystems, Nussloch, Ger-
many). All the slides were scanned at the maximum avail-
able magnification (40×).

Overall FRF framework
The FRF model is applied to detect anomalous pixels 
highlighting the modified vascular network. Specifically, 
the millimeter raw images (microscopic images) are first 
converted into a gray scale images, and successively, the 
training model to be used to automate the recognition of 
the anomalies of the testing images is constructed. The 
training process is performed by selecting, using ellipses, 
the classes to be recognized. The classes are clusters of 
pixels representing a combination of gray scaled pixels 
arranged into a matrix enclosed into the ellipses. Three 
main labelled target classes are defined: the three classes 
are enough to recognize the background, isolated ele-
ments (endomysial microvessels) and agglomerates (peri-
mysial vessels). For each class, different regions (ellipses) 
are selected in the same images, thus optimizing the 
training model. The testing was performed on twelve new 
images not used for the training process and considered 
suitable for the analysis (see also supporting materials). 
The FRF engine allows the features to be extracted as 
combinations of clusters of pixels, targeting the specific 
class, and provides, as output a probabilistic image indi-
cating the higher probability of finding regions matching 
with the specific classes. Finally, the platform estimates 
the percentage of area of pixels with the greter probabil-
ity. More details are discussed in the next section, listing 
all the steps followed.

FRF model and platform functionalities
The FRF model adopted for image-processing to detect 
CD31+ endomysial microvessels is illustrated in Fig.  1, 
and follows six different stages:

 	• Stage 1 (selection of the training images): 84 initial 
images acquired with the two different systems 
at different known resolutions were selected for a 
second step selection of the training process (these 

differences allow the error gap in the training stages 
to be reduced);

 	• Stage 2 (gray scale conversion): all the selected 
images are automatically converted into gray scale 
images (gray pixel matrix containing all the image 
features except colors);

 	• Stage 3 (training process): for each final selected 
image suitable for the training, three main classes 
are identified to train the overall FRF classifier 
of the image processing platform (class 1: white 
spaces devoid of information, class 2: isolated 
endomysial microvessels, and class 3: perimysial 
vessels). To support the reproducibility of the 
proposed approach, we illustrate in Fig. 2 an 
example of a training process performed on a single 
image; the final classifier is constructed by adding 
the information on classes of other images. The 
possibility of selecting the same class on the same 
image allows the number of images needed for the 
training process to be significantly reduced.

 	• Stage 4 (testing images): the testing images are 
loaded and processed in the platform, obtaining the 
classification of the three classes as clusters of pixels 
contained in the images. The tested images are not 
used for the training process (data unseen by the 
training model), avoiding the overfitting and properly 
assessing the model’s performance.

 	• Stage 5 (probabilistic images): in the whole image for 
each class, the probabilistic maps are generated as 
topographic maps with pixels tending towards white 
color, indicating a higher probability;

 	• Stage 6 (threshold filtering and pixel counting): the 
pixels with an intensity gray value between 45 and 
255 are filtered for each selected probabilistic image; 
these filtered pixels were enhanced by imposing a red 
color (output image of the selected class), counting 
their distribution, reported as the percentages of 
threshold pixels in the whole image.

The threshold setting of the step 6 is the same as in the 
simple counting manual procedure, so as to compare the 
two approaches.

The platform also provides the following algorithm 
performance parameters: Precision, Recall, FMeasure, 
Receiver Operating Characteristic Curve (ROC), Fallout, 
and Threshold. The Precision estimates the accuracy of 
positive predictions, the Recall measures the complete-
ness of positive predictions, the ROC curve estimates 
the sensitivity as a function of the false positive rate 
(True Positive Rate versus False positive Rate), the Area 
Under Curve (AUC) is the total area estimated under 
the ROC curve, the Fallaout indicates the false positive 
rate, and the Threshold function evaluates the perfor-
mance of a classification model by measuring the degree 
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of separation between the positive and negative distribu-
tions (the model is better at separating the positive from 
negative cases when T = 1).

	
Precision = True Positive

True Positive + False Positive
� (1)

	
Recall = True Positive

True Positive + False Negative
� (2)

	
FMeasure = 2 Precision · Recall

Precision + Recall
� (3)

	
Fallout = False Positive

False Positive + True Negative
� (4)

	 Threshold = Recall − False Positive Rate� (5)

The FRF platform integrates the free open source Weka 
java-based libraries.

The business process modelling and notation (BPMN) pre-
screening protocol
The BPMN is an international standard graphical nota-
tion [21]- [22] (ISO/IEC 19510:2013) suitable to formu-
late a new protocol in medicine [7, 23] and in general to 
map healthcare processes [24]. In the proposed paper, the 
BPMN is adopted to formulate the pre-screening proto-
col Endomysial Microvessels integrating the supervised 
FRF algorithm as an engine supporting the discrimina-
tion of suspect cases based on a specific threshold of 
endomysial microvessel density.

Statistical analysis
Comparison between-the two methods of measuring 
endomysial vessel density was performed using simple 
linear regression analysis with GraphPad Prism (release 
6.0, GraphPad Software, La Jolla, USA). Differences were 
considered statistically significant at a p-value of < 0.001.

Fig. 1  FRF model detecting anomalous pixels. The workflow is characterized by different phases indicated by numbers from 1 to 6: (1) conversion to 
gray scale of the original raw image (on a millimeter scale), obtaining a full gray pixel image; (2) training process of each image by selecting the classes 
by surrounding ellipses (clusters of pixels defining the classes 1, 2 and 3 as combinations of pixels with a different intensity); (3) construction of the FRF 
training model using the three labelled target classes of the supervised FRF algorithm; (4) testing of new unclassified images processed by the FRF engine; 
(5) features extraction (output images of the platform) as probabilistic images (as regard the new images, a probabilistic image is extracted for each class, 
indicating the higher probability of finding regions matching with the specific classes); (6) filtering (output images of the platform) of the pixels with a 
greater probability of obtaining the spatial distribution of the red pixels that will be automatically counted to estimate the risk level, shown as the red pixel 
percentage indicator (the threshold setting is the same as in the simple counting manual procedure so as to match the two approaches)
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FRF results
To measure the density of microvascular network in 
human muscle diagnostic biopsies and to construct the 
training model for the FRF classifier, three main classes 
of pixels have been defined: class 1 qualifies the white 
spaces, class 2, the isolated endomysial microvessels, and 
class 3, the perimysial large vessels. In Fig. 2 an example 
of identification of the three classes on the same image 
is illustrated: only three small pixel areas are enough to 
identify the classes for FRF algorithm processing. The 
proposed platform allows the areas enclosed by ellipses 
to be identified during the classification process: these 
areas are clusters of pixels defining the classes 1, 2 or 3 as 
combination of pixels with a different intensity, defining 
the features to be recognized. This identification is not 
required for a stable constructed training model. Only 12 
images are already enough to construct a good algorithm 
training process. For each image, the areas containing 
appropriate pixels are manually enclosed by ellipses (see 
Fig. 2), defining the main three classes indicating a white 
background (class 1), isolated endothelial cells of endo-
mysial microvessels (class 2), and perimysial large vessels 
(class 3). The FRF training classifier does not improve in 
performance by increasing the images for classification 
beyond 12. The 12 images chosen for the classification 
consider different microscope detecting conditions (light, 
adjustment, etc.) to compensate for any possible calculus 

error during the classification of the testing process (Step 
4).

FRF image processing was performed for the 84 pho-
tomicrographs derived from 84 patients with IIM. A rep-
resentative example of the obtained results is shown in 
Fig.  3. The FRF probabilistic images of the CD31 endo-
mysial microvascular network provide the quantifiable 
pixels of microvessel density serving for further accu-
rate analyses and comparison (Fig. 3c, d). The precision 
parameter (probability of algorithm error) has estimated 
the algorithm performance. A Precision of 1 is achieved 
after about 5390 iteration steps (epochs) executed by 
the FRF (Fig.  4). Few seconds are necessary to reach 
5390 iterations using a standard PC (11th Gen Intel(R) 
Core(TM) i5-1135G7, 2.42  GHz). The Recall parameter 
of the chosen FRF processing analysis algorithm also 
showed an excellent performance (Fig. 5). Similar Preci-
sion and Recall trends were found only for the 12 images 
obtained using the Aperio Scanscope, an automatic scan-
ning platform, whereas the other 72 images derived from 
a traditional microscope and video camera obtained 
poorer performances due to the smaller acquired areas.

In order to show how the platform extracts the high-
est probability, the probabilistic map of the image pro-
cessed in Fig. 3(c) is shown in Fig. 6: only the pixels with 
the highest intensity (near the white area indicating the 
highest probability) will be highlighted in red. The map of 

Fig. 2  Example of the supervised approach defining three training classes using the FRF platform. The red ellipses demonstrate class 1 (empty back-
ground); the purple ellipses demonstrate class 2 (isolated elements = endomysial microvessels); the green ellipses demonstrate class 3 (aggregate ele-
ments = perimysial large vessels)
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Fig. 3  Representative images of CD31-immunolabeled human muscle tissue showing the CD31+ vascular network in a female anti-HMGCR+ IMNM 
patient (a) and a female PM patient (b), (c, d) FRF processed images highlighting the quantifiable red pixels of endomysial microvessels, class 2 for the 
FRF classifier. The red pixel distribution is shown in the insets. The pixel distribution is related to the isolated endothelial cells of class 2, the black region 
contains other parts of the muscle tissue not included in the class 2. These excluded regions could contain agglomerates of blood vessels (the red color 
indicates a high probability of finding isolated endothelial cells only). As mentioned in the main text, the different density of vascular network is useful 
to discriminate between the various kind of IIM
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Fig. 6 is obtained by fixing the same threshold as for the 
other analyzed images.

Other experimental checks proved that the FRF algo-
rithm performance trend did not change after increas-
ing the training images. For each testing images, the 
performance parameters were estimated as very similar 
to those presented in the Fig. 4, highlighting the system-
atic calculus approach of the FRF model. As expected 
Precision and Recall show an inverse relationship (best 
performance achieved at 5390 epochs), the FMeasure is 
quite stable over a large probability range, confirming the 
Precision and Recall trends, the ROC curve highlights 
the ideality of the FRF classifier, the Falloout indicates a 
good decrease of the false positive rate, and the Threshold 
shows a clear separation between the positive and nega-
tive distributions. The very good performance results 

Fig. 5  Linear regression graph of comparison between FRF and manual 
methods for counting endomysial microvessels

 

Fig. 4  FRF Performance parameters: (a) Precision versus epochs; (b) Recall versus epochs; (c) FMeasure versus epochs; (d) ROC curve estimating the 
sensitivity as a function of the false positive rate (True Positive Rate versus False positive Rate); (e) Fallout versus epochs; (f) Threshold versus epochs. After 
increasing the training images from 3 to 12, the epochs sufficient to acheive the convergence did not change significantly
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demonstrate that the FRF algorithm is a good alterna-
tive to the Convolutional Neural Network (CNN) applied 
in biomedical image processing (both the techniques 
exhibit a very close performance [25]). In Table 1 shows a 
comparison between different techniques Artificial Neu-
ral Network (ANN), CNN, Random Forest (RF), and FRF. 
The FRF algorithm proposed in this study is optimized 
for cell image processing [8, 9].

The simple linear regression analysis between FRF algo-
rithm measures and manual counting of endomysial ves-
sels shows a sufficient correlation coefficient (r2: 0.7919; 
F:38.05; p: 0.0001; Fig. 5).

All the images are processed by using a Core i5 2.4 
75  GHz/16 GB RAM processor. The complexity of the 
model is decreased thanks to the possibility of select-
ing the same class in different regions (cluster of pixels 
enclosing a class) of a single image. By means of this 
approach, only about 20 s. are necessary for training on 
a single image (the computational time is a function of 
the number of ellipses representing the classes). The total 
computational cost of the training is the sum of the times 
necessary for the training of each image. About 30 s. are 
enough for the testing process and for the plotting of 
the probabilistic images. The main limitation of the FRF 
image processing lies in the variable image brightness 
(raw images having different degree of brightness) requir-
ing a possible preliminary setting to obtain the same pixel 

intensities as in other images which could be acquired by 
another microscope. Furthermore, very dark images may 
lead to algorithm failure, incorrect training and incorrect 
probability estimation. For these reasons, a pre-selection 
of images is necessary.

Pre-screening procedure
The proposed FRF model is a useful tool to support 
clinical investigations for pre-screening of anomalous 
endomysial microvessels density. In Fig.  7, the proce-
dure to integrate FRF analysis into a pre-screening pro-
tocol merging traditional analyses with FRF is illustrated. 
Specifically, the BPMN workflow defines the procedure 
to define a suspect condition by through image analy-
sis and processing. The BPMN approach is suitable for 
inclusion in workflow protocols in medicine [21] and for 
pre-screening processes [9]. The proposed protocol is 
characterized by the following steps:

(a)	The process starts with the correct acquisition of the 
microscope image of the patient to be checked: the 
images must be detected if possible using the same 
microscope and using the same image setting to 
decrease the risk of FRF algorithm error (resolution, 
contrast, saturation, luminosity, etc.);

(b)	The FRF testing is performed by selecting on the 
image the class to be checked for (in the proposed 
process, class 2 is observed); the same image is 
adopted to improve the training FRF model;

(c)	The platform estimates the red pixel distribution 
in the analyzed image, indicating the endomysial 
microvessels density;

Table 1  Comparison of AI image processing performance (Area 
under curve –AUC–)
ANN [25] RF [25] CNN [25] FRF

(proposed study)
0.861 0.988 0.991 ≅1

Fig. 6  Probabilistic map of class 2 identifier of image shown in Fig. 3(a)
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(d)	The decision is made to repeat the examination 
when the FRF algorithm estimates a density of class 
2 pixels exceeding a threshold based on analyses of 
images derived from unaffected individuals.

The procedure highlights the point that the patient 
should be not periodically biopsied when both the tra-
ditional and the FRF check show no suspect conditions. 
The threshold is placed in a % area change. For the cases 
analyzed in our cohort of IIM patients, a threshold 
greater than 4% can refer to patients requiring further 
attention for their muscle angiogenic potential and con-
fidently assigned an IMNM rather than a PM diagnosis.

Conclusion
The proposed FRF model has been adopted to sup-
port the clinical investigation for an IIM diagnosis. Spe-
cifically, the method is suitable for the pre-screening of 
patients by estimating their endomysial microvessels 
density. The FRF algorithm automates a supplemen-
tary check of patients, adopting image processing. The 
high performance FRF method allows the precise com-
puted analysis of sub-optimal images because the prior 
machine training is able to mediate the calculation error. 
Furthermore, few images are already enough to construct 
a good training model. The paper demonstrates that FRF 
could be a good alternative to traditional pre-screening 
procedures, suggesting a new clinical process that can 
define conditions suggestive of IMNM if a higher endo-
mysial microvessel density is calculated. This method 
allows more than 90% time saving during capillary den-
sity estimation. The very good performance of the FRF 
algorithm, indicated by the Precision parameter equals 
to 1 after different epochs, shows that there is no need 

to compare other deep learning algorithms in order to 
improve the performance.
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