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Abstract 

Thyroid cancer is the most common form of endocrine malignancy and fine needle aspiration (FNA) cytology is a reli-
able method for clinical diagnosis. Identification of genetic mutation status has been proved efficient for accurate 
diagnosis and prognostic risk stratification. In this study, a dataset with thyroid cytological images of 310 indeter-
minate (TBS3 or 4) and 392 PTC (TBS5 or 6) was collected. We introduced a multimodal cascaded network frame-
work to estimate BARF V600E and RAS mutations directly from thyroid cytological slides. The area under the curve 
in the external testing set achieved 0.902 ± 0.063 and 0.801 ± 0.137 AUCs for BRAF, and RAS, respectively. The results 
demonstrated that deep neural networks have the potential in cytologically predicting valuable diagnosis and com-
prehensive genetic status.

Keywords Deep convolutional network, Thyroid cancer, Fine needle aspiration cytology, Annotation-free, Gene 
mutation estimation

Introduction
Thyroid cancer is one of the most prevalent malignancies 
of the endocrine system, and the incidence rate of thyroid 
nodules has increased significantly due to the improved 
capabilities of ultrasound detection [1]. The histopathol-
ogy of thyroid cancer can be mainly classified as papil-
lary thyroid carcinoma (PTC,70–90%), follicular thyroid 
carcinoma (FTC, 5–10%), anaplastic thyroid carcinoma 

(ATC, 2%) and medullary thyroid carcinoma (MTC, 
2% <) [2]. The majority of PTC exhibit a favorable long-
term prognosis with a 10 year survival rate of 96% after 
standard treatment, 5–10% of cases manifest as advanced 
disease with poor prognosis [3]. Hence, early precise 
diagnosis information holds extremely significance for 
patients in avoiding over- or under- treatment.

Currently, ultrasound-guided fine-needle aspiration 
(FNA) combined with liquid-based thin-layer cytology 
(TCT) is a reliable method for clinical identification of 
benign and malignant thyroid nodules [4]. It is suitable 
for the diagnosis of thyroid nodules with typical cytologic 
characteristic such as papillary, flat honeycomb sheet-like 
architecture, and pseudoinclusions [5]. However, using 
The Bethesda System (TBS), pathologists often feel con-
fused when dealing with nodules exhibiting undistinctive 
cytologic features which are classified as indeterminate 
(TBS3: Atypia of undetermined significance or TBS4: 
Follicular neoplasmFollicular lesion of undetermined 
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significance) [6]. With the constant innovation of diag-
nostic technology, molecular detection has integrated 
in the entire thyroid cancer diagnostic and treatment 
process. Genetic analysis of FNA samples can not only 
enhance the accuracy of preoperative cytological diag-
nosis, but also be used to predict the risk of invasiveness 
and provide decision-making information for thyroid 
nodule patients [7].

Genetic alternations in the two signaling pathways of 
mitogen-activated protein kinase (MAPK) and phos-
phatidylinositol 3-kinase (PI3K) have been identified 
responsible for the incidence and progression of thyroid 
cancer [8]. Notably, BRAF V600E mutation is observed in 
over 80% of PTC patients, followed by mutations of RAS 
(including NRAS, KRAS, HRAS) present in 10–15% of 
PTC. The mutations in BRAF or RAS genes activate the 
MAPK signaling pathway, facilitating the advancement 
and metastasis of thyroid tumors [9, 10]. In addition, 
studies have shown that BRAF V600E mutation is closely 
related to the reduced sensitivity of radioactive iodine 
treatment [11, 12]. RAS gene mutations are commonly 
observed in thyroid adenomas, underscoring their sig-
nificance in the carcinogenesis of thyroid follicular cells 
[13].

The general procedure employed by genetic analysis 
including ARMS PCR, Sanger sequencing, next-gener-
ation sequencing, and high-performance liquid chro-
matography. ARMS PCR is relatively commonly used in 
clinical practice owing to its high sensitivity and speci-
ficity. However, its clinical application is limited by vari-
ous factors such as strict requirements on laboratory and 
sample quality, time-consuming experimental steps, and 
scarcity of qualified staff [14].

With the rapid development of deep learning, many 
aritificial intelligence(AI)-assisted diagnostic systems 
have been developed for various tasks in tumor pathol-
ogy, encompassing tumor classification, prognosis pre-
diction, as well as genetic mutation estimation [15, 16]. 
In 2019, Guan et al. trained a deep convolutional neural 
network on cytological images for classification of PTC 
and Non-PTC [17]. Later in 2020, malignancy estimation 
of thyroid cytological lesions was reported [18, 19]. Fur-
thermore, Anand et al. [20] and Xi et al. [21] introduced 
various AI-based diagnostic systerm for predicting BRAF 
mutation on H&E-stained slides and ultrasound images, 
respectively.

These methods have significantly improved the appli-
cation extends of AI in thyroid pathology diagnosis. 
However, genetic mutation prediction from FNA slices 
of thyroid nodules, which can augment malignancy diag-
nosis in indeterminate group and imply prognostic risk 
in PTC group, is still very challenging. To enhance the 
clinical utility of identifying genetic status, we proposed 

a multimodal cascaded deep convolutional framework 
to sequentially classify informative cellular regions and 
estimate genetic mutations (i.e., BRAF and RAS) on the 
WSIs. The proposed framework consists of a few-shot 
region classifier and a multimodal mutation classifier, 
which significantly reduces the need for manual anno-
tations while maintaining a high level of classification 
generalization capability. The main contributions of this 
study are as follows:

• We proposed a multimodal cascaded deep convolu-
tional framework to to sequentially detect informa-
tive cellular regions and estimate genetic mutations 
using FNA slices.

• We introduced a few-shot learning strategy which 
significantly reduces the number of annotations 
required for training region classifier while maintain-
ing high classification accuracy.

• We further analyzed the effectiveness of the number 
of features selected for ensembling to understand its 
effects on the performance and stability of deep con-
volutional networks.

The rest of the paper is organized as follows: Firstly, 
we presented the datasets and methods used for this 
research in “Materials and methods”  section. Then, we 
illustrated the quantitative and qualitative results in 
“Results” section. Finally, discussion and conclusion were 
presented in the “Discussion” section.

Materials and methods
Data
The cytology slides (Thin Prep, Papanicolaou stained) 
of 702 distinct thyroid nodules were obtained from the 
Department of Pathology, the Eighth Affiliated Hospi-
tal of Sun Yat-sen University (596/702) and the Depart-
ment of Pathology, the Second Affiliated Hospital of 
Guangzhou Medical University (106/702) (The study 
was conducted in accordance with the Declaration of 
Helsinki, and approved by the Institutional Review 
Board with protocol code 2024d013). Among the 310 
indeterminate and 392 PTC nodules collected in this 
study, 58(18.7%) and 351(89.5%) BRAF V600E muta-
tions were found respectively. Besides, we detected 43 
(13.9%) and 9 (2.3%) RAS mutations in 310 indeter-
minate and 392 PTC nodules respectively. All cytol-
ogy slides were diagnosed by four expert pathologists. 
Each cytologic sample was separated after mixing, with 
one half used for the creation of liquid-based cytol-
ogy slides for microscopic diagnosis, and the other half 
employed for the generation of cell wax blocks as speci-
mens for subsequent genetic testing. The Amplification 
Refractory Mutation System-polymerase chain reaction 
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method was used to detect the mutation status of 
BRAF V600E, KRAS G12C/G12V/Q61R, NRAS Q61R, 
and HRAS Q61R, following the protocols provided by 
the manufacturer (Mole Bioscience Co. Ltd., Jiangsu, 
China). All the 702 slides were scanned with 20x mag-
nification ratio by PANNORAMIC 1000, 3DHISTECH 
(https:// www. 3dhis tech. com/ resea rch/ panno ramic- 
digit al- slide- scann ers/ panno ramic- 1000/). To facilitate 
cell cluster detection, binary masks of cell areas of the 

WSIs were carefully annotated by experienced patholo-
gists using QGIS (v3.22.7 LTR, https:// qgis. org/).

As shown in Table 1, 702 WSIs of patient nodules were 
splitted into training, validation, and external testing sets. 
In our experiment, the size of each tile was fixed to 512 × 
512 pixels.

Methodology
In this study, we proposed an annotation-free cascaded 
deep learning pipeline to sequentially detect informa-
tive cellular regions and then estimate the somatic gene 
mutations from the thyroid cytology whole-side images.

As shown in Fig. 1, the experimental workflow is con-
sisted of three parts: (a) whole-slide image preproc-
essing to cut it into image patches and filter out white 
noise or background (b) few-shot region classification 
to determine informative and non-informative cellular 
regions (c) multimodal genetic mutation classification 
to estimation mutation type for each tile. Following pre-
processing, a limited subset of image patches exhibit-
ing varying abundances of follicular cells-encompassing 
both informative and non-informative categories-will 
undergo few-shot region classification. Subsequently, the 
well-trained region classifier will serve to exclude image 
patches that lack follicular cells. Only those informative 
patches will be retained for the training and evaluation of 

Table 1 Distribution of patient nodules and corresponding 
clinical information

Parameter Training set Validation set External testing set

Patient nodules (n) 485 111 106

Age(years) 42.1 ± 12.5 43.6 ± 12.0 46.5 ± 13.8

Gender

 Male 117 (24.1%) 33 (29.7%) 23 (21.7%)

 Female 368 (75.9%) 78 (70.3%) 83 (78.3%)

BRAF mutation status

 Mutant 294 (60.6%) 64 (57.7%) 51 (48.1%)

 Wild 191 (39.4%) 47 (42.3%) 55 (51.9%)

RAS mutation status

 Mutant 36 (7.4%) 10 (9.0%) 6 (5.7%)

 Wild 449 (92.6%) 101 (91.0%) 100 (94.3%)

Fig. 1 Experimental workflow. a Whole-slide image preprocessing b Few-shot image patch classification for estimating informative 
and non-informative cellular regions c Multimodal genetic mutation classifier for tile-level somatic gene mutation estimation

https://www.3dhistech.com/research/pannoramic-digital-slide-scanners/pannoramic-1000/
https://www.3dhistech.com/research/pannoramic-digital-slide-scanners/pannoramic-1000/
https://qgis.org/
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the multimodal genetic mutation classification, ensuring 
that the model is trained on relevant, cellularly informa-
tive data.

WSI preprocessing
At data preprocessing, the 702 pairs of whole-side images 
(WSIs) and their corresponding clinical records were dis-
tributed to three groups: training (485), validating (111), 
and testing (106). A 512 × 512 square window was applied 
to the whole-side image to generate image tiles. To avoid 
interfering of blank backgrounds and dark noises, a sim-
ple threshing strategy was applied to filter all tiles with 
average pixel values ≤ 10 or ≥ 240. As shown in Table 1, 
there were 1 245 999, 422 517, and 450 574 image tiles 
within the corresponding training, validating, and testing 
set.

Few‑shot classification
In ultrasound-guided FNA, only a small portion of cells 
will be taken from patient nodules which usually leads to 
a relatively sparse distribution of cellular clusters within 
a whole-slide image. Before any diagnostic classification 
or gene mutation estimation, it’s vital to detect and clas-
sify the informative cellular regions. Other than exist-
ing researches [16] which manually annotated all region 

of interests (ROIs), we introduced a few-shot training 
strategy, which learn from limited annotation data while 
maintaining good generalization capability, that sig-
nificantly reduced human labor and speed-up the entire 
experimental workflow.

As shown in Fig.  2, a small subset (15 / 516) WSIs 
within internal set were annotated by experienced 
pathologist and then applied for training (i.e., 10 WSIs) 
and validating (i.e., 5 WSIs) the few-shot cellular region 
classifier.

For better generalization capability, the region classifier 
was composed of a fixed CLIP (Contrastive Language-
Image Pretraining) [22] image encoder, a learnable Effi-
cientNet [23] image encoder, and a fully-connected (FC) 
layer. The CLIP model introduced a contrastive pre-train-
ing scheme which bridges image and text description of 
a specified scene. After training with large-scale paired 
image-text dataset, the CLIP can serve as a robust zero-
shot image encoder. Other than CLIP, we chose Efficient-
Net, a classic model architecture designed to produce 
high accuracy under limited computational operations, 
as the learnable image encoder which can gradually 
adjust its parameters during every iterations. As shown 
in Table 2, we chose an ImageNet-1K [24] pretrained Effi-
cientNet B0 (https:// pytor ch. org/ vision/ master/ models/ 

Fig. 2 Sampled Whole-slide image from SYSU8H-Thyroid dataset. a The whole-side-image (WSI) b Non-annotated negative patches within WSI c 
Annotated positive patches within WSI

https://pytorch.org/vision/master/models/generated/torchvision.models.efficientnet_b0.html
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gener ated/ torch vision. models. effic ientn et_ b0. html) as 
the network backbone.

The final FC layer taken two encoded features of CLIP 
and EfficientNet as input to generate output ( xi ). As a 
binary classification task, we adopted sigmoid function 
to generate final prediction ( pi ) and L1 loss as object 
function.

Where pi and yi was the ith prediction and correspond-
ing ground truth. The ranges of prediction pi and yi were 
limited to [0, 1].

With all of the above layers being trained by mini-batch 
stochastic gradient descent (SGD) [25] to minimize the 
L1 loss, the classifier learned to make category predic-
tion on every 512x512 image patches of the SYSU8H-
Thyroid dataset. The image tiles with high probability of 
being a informative region of training and validation set 
were subsequentially used for training and validating the 
multimodal classifier to discriminate wild type (i.e., W.T.) 
vs. mutant type (i.e., M.T.) of target somatic genes (i.e., 
BRAF and RAS), respectively. To ensure the high fidelity 
of selected tiles, a high threshold (i.e., 0.75) was used to 
filter out tiles with a low probability of being an informa-
tive cellular region.

Multimodal classifier
Similar to few-shot region classifier, our proprosed mul-
timodal classifier consisted of three encoders, a multi-
head attention module, and two FC layers. In addition to 
image encoders, we adopted a tokenizer (https:// github. 

(1)

pi =
1

1+ e−xi

LossL1 =
1

n

n

i=1

|yi − pi|

com/ mlfou ndati ons/ open_ clip) to convert text clini-
cal records (e.g., gender of female, age of 44) to a 1024 
× 1 vector. The multi-head attention module, which was 
firstly proposed by Ashish et  al. [26] in 2017, is able to 
capture complex relationships in data and adapt to vary-
ing context. The equation for multi-head attention can be 
formulated as follows:

Here, Q, K, and V represented the query, key, and value 
matrices, respectively. WQi , WKi , and WVi were learnable 
linear transformation matrices for each attention head. 
WO was the output transformation matrix. dk was the 
dimension of the key vectors.

The output of muli-head attention module was passed 
to two FC layers to generate multi-class predictions (X).

where xi and N was an element and number of elements 
in the input vector X, respectively.

Instead of L1 loss, we adopted categorical cross-
entropy loss [27] as our object function to address multi-
class classification. The equation can be formulated as:

Where p and y was the predicted probability distribu-
tion and corresponding ground truth. The i, j, and C rep-
resented sample, class indice and the number of classes, 
respectively.

To make a decisive conclusion on the whole-slide 
image (WSI) using the separated predictions of tiles, we 
adopted a frequency histogram to convert tile-level pre-
dictions to WSI instance-level probability. For each WSI, 
the probability ( pwsi ) can be calculated by the following 
equations.

The n represented the number of bins within range[0, 
1]. Finally, the pwsi and corresponding ground truth ( ywsi ) 
were used to compute the area under the receiver opera-
tor characteristic (ROC) curve [28] and its confidence 
interval (CI) [29] for performance estimation.

(2)

MultiHead(Q,K ,V ) = Concat(head1, . . . , headh) ·WO

headi = Attention(Q ·WQi ,K ·WKi ,V ·WVi)

Attention(Q,K ,V ) = softmax

(

QKT

√

dk

)

· V

(3)
pi =

exi

N
∑

j=1

exj

(4)Loss(y, p) = −
1

N

N
∑

i=1

C
∑

j=1

yij · log(pij)

(5)

Histogram = [f 1, f 2, f 3, ..., fn]

pwsi = ARGMAX(Histogram)/n+MAX(Histogram) ∗ 0.1/n

Table 2 The backbone network of EfficientNet. Each row 
describes the stage, operation, input resolution, output channel, 
and the number of layers

Stage Operator Resolution Channels Layers

0 512x512 3 0

1 Conv3x3 512x512 32 1

2 MBConv1, k3x3 256x256 16 1

3 MBConv6, k3x3 256x256 24 2

4 MBConv6, k5x5 128x128 40 2

5 MBConv6, k3x3 64x64 80 3

6 MBConv6, k5x5 32x32 112 3

7 MBConv6, k5x5 32x32 192 4

8 MBConv6, k3x3 16x16 320 1

9 Conv1x1 &Pooling 16x16 1280 1

https://pytorch.org/vision/master/models/generated/torchvision.models.efficientnet_b0.html
https://github.com/mlfoundations/open_clip
https://github.com/mlfoundations/open_clip
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The TPR and FPR represent true positive rate (sen-
sitivity) and false positive rate (1-specificity) at various 
threshold (t) settings.

After repeating several times of the training and vali-
dation procedures, the hyperparameters, including batch 
size, the  number of epochs, and learning rate, are opti-
mized with the Adam stochastic optimizer [30]. Sub-
sequently, the predictions generated by the optimized 
models were evaluated using the WSIs of the testing set 
(see details in Table 1).

Results
Few‑shot region classification
The probability maps generated by the few-shot region 
classification models using tiles of the WSIs are depicted 
in Fig.  3. Within each sample (i.e., a and b), as the 

(6)ROC-AUC =

∫ 1

0
TPR(FPR−1(t)) dt

predicted probability decreases (from top to bottom), 
the presence of informative cell clusters in each row of 
tiles gradually diminishes. As the predicted probability 
ranges between 0.75 and 1.00, the majority of tiles con-
tain valid diagnostic cells (i.e., 1st row). However, the 
predicted probability falls between 0.50 and 0.75, only a 
few tiles contain partial valid diagnostic information (i.e., 
2nd row). When the predicted probabilities are ≤ 0.50, 
the tiles essentially lack of diagnostic information (i.e., 
3rd and 4th rows). To ensure the reliability of the selected 
tiles, only those predicted with high probability (i.e., 0.75 
to 1.00) are chosen for further training and validating the 
following genetic mutation estimation models.

Multimodal genetic mutation estimation
After model ensembling, the proposed method gener-
ated probability of gene mutations (i.e., BRAF and RAS) 
of every WSI.

Fig. 3 Probability maps of informatic region classification using tiles of the whole slide images (WSIs). From left to right: the whole-side image; 
the predicted probability map over WSI; the zoom-in tiles with various probability ranges. a, b, and c are randomly sampled cases
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As shown in Fig. 4a, in BRAF mutation estimation task, 
the proposed method reached 0.938 (95% CI of 0.917–
0.960), 0.905 (95% CI of 0.849–0.962), and 0.902 (95% 
CI of 0.839–0.965) AUCs in training, validation, and 
external testing set, respectively. In Fig. 4b, our method 
also displayed high accuracy in RAS mutation estima-
tion task. The AUCs of training, validation, and external 

testing sets reached 0.881 (95% CI of 0.812–0.951), 0.802 
(95% CI of 0.621–0.984), and 0.801 (95% CI of 0.663–
0.938). Compared with RAS mutation estimation, the 
proposed method present higher accuracy and stability 
in BRAF mutation estimation.

In order to investigate the relationship between 
image features and gene mutations, we selected two 

Fig. 4 The receiver operator characteristic (ROC) curve and corresponding area under the curve (AUC) of genetic mutation estimation of the whole 
slide images (WSIs). a The ROC curves of BRAF mutation estimation b The ROC curves of RAS mutation estimation

Fig. 5 Representative tiles of BRAF mutation a The whole slide image. b The histogram of tile-level predictions within the WSI. c The zoom-in tiles 
with various probability ranges
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representative cases of BRAF and RAS mutations, 
respectively.

As shown in Fig. 5, the whole slide image (WSI) and the 
corresponding tiles of different BRAF mutation probabi-
lites were displayed. The tiles with high probabilities of 
being BRAF mutant type were listed on top of Fig. 5c.

As shown in Fig.  6, the whole slide image (WSI) and 
the corresponding tiles of different RAS mutation proba-
bilites were displayed. The tiles with high probabilities of 
being RAS mutant type were listed on top of Fig. 6c.

Discussion
Regarding the proposed framework
Previous studies have shown the capacity of deep learn-
ing models not only for thyroid cancer diagnosis but 
also for predicting genetic mutations based on diverse 
medical images. Most current researches focus on clas-
sifying thyroid nudules as benign or malignant according 
to the histological diagnosis by CNNs [17–19]. Anand 
et al. developed a deep neural network that predict BRAF 
V600E mutational status from thyroid cancer H&E slides 
[20]. Wang et al. implemented a deep learning based on 
a dataset of 118 PTC cytologic WSIs to predict BRAF 
V600E mutation [31]. Considering the significance 
of providing as much valuable clinical information as 

possible to patients with thyroid nodules before surgery, 
in the present study, we firstly employed a DNN model 
to complete comprehensive genetic prediction within dif-
ferent diagnostic cytology slides. Our method employed 
a few-shot learning strategy, significantly reducing the 
need for manual annotations while maintaining a high 
level of classification generalization. The utilization of 
deep convolutional networks for estimating gene muta-
tions (BRAF and RAS) offers pathologists a more con-
venient means to assess risk and guide treatment.

Accuracies, uncertainties, and limitations
Qualitative and quantitative assessments on the inter-
nal validation set, our model achieved 0.905 ± 0.056 and 
0.802 ± 0.181 AUCs for BRAF, and RAS, respectively. 
Similarly, our method kept high accuracy in the exter-
nal testing set, showing 0.902 ± 0.063 AUC of BRAF and 
0.801 ± 0.137 AUC of RAS. Compared with BRAF muta-
tion estimation, our method has encountered challenges 
in distinguishing between wild type and mutant types 
of RAS due to a relatively biased data distribution (i.e., 
5.7%–9.0% W.T. in the training, validation and testing 
set). Due to the data-driven nature of deep learning mod-
els, a substantial quantity of positive samples is typically 
necessary for effective model training. Consequently, it 

Fig. 6 Representative tiles of RAS mutation. b The histogram of tile-level predictions within the WSI. c The zoom-in tiles with various probability 
ranges
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is imperative to consider the reliability of the numerical 
values associated with the limited positive sample size of 
RAS mutants.

The occurrence and progression of PTC is a com-
plex, multifactorial process. Among the various genetic 
alterations, the BRAF V600E and RAS Q61R muta-
tions are two prevalent mutations associated with PTC. 
Notably, the BRAF V600E mutation exhibits an almost 
100% specificity for the diagnosis of PTC, making it a 
critical marker in clinical settings. Consequently, this 
study focuses exclusively on the detection and pre-
diction of these two hotspot mutations. It is crucial 
to highlight that even in the absence of BRAF V600E 
and RAS Q61R mutations, other genetic abnormalities, 
such as RAS Q61K, RET and NTRK fusions, although 
less common, can also play a key role in the pathogen-
esis of PTC [32]. In this study, cases with undetected 
non-hot-spot mutations or fusions may have been 
incorrectly classified as wild-type, potentially skewing 
the true prevalence of BRAF-like and RAS-like pheno-
types in the dataset. The heterogeneity of the wild type 
group, which may include cases with undetected muta-
tions, could introduce variability into the results and 
reduce the model’s overall accuracy. We propose incor-
porating comprehensive genomic profiling to capture 
a wider range of mutations and fusions in future stud-
ies. This would enable a more accurate classification of 
cases and improve the robustness of the findings.

Within our cascaded classification pipeline, the models 
were trained to generate tile-to-label predictions using 
multimodal feature encoders. However, the absence of 
internal connectivity with adjacent tiles within the same 
WSI may result in inconsistent predictions among tiles 
(e.g., predicting PTC for tile A and AUS for tile B). Addi-
tionally, as the region classifier and multimodal mod-
els were trained and optimized separately, the proposed 
framework necessitates extra computational time and 
storage for training, saving checkpoints, and interfer-
ring. To enhance computational efficiency, further work 
should explore a unified model with shared parameters 
and objective functions.

To thoroughly assess the effectiveness and generaliza-
tion of the proposed method, further evaluation using 
a larger dataset that encompasses more clinical centers, 
racial diversity, and genetic alterations is essential.
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